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ABSTRACT

This interim report covers research performed from |
October 1, 1979 through September 30, 1980 on electron-
—b&am excited plasma turbulence and electromagnetic emission,
on propagation of intense electromagnetic radiation in the |
earth's ionosphere, on plasma diagnostics, and on experiments
to accelerate ions and excite low frequency turbulence in
the laboratory.
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I. Introduction '

This interim report describes work performed under
AFOSR grant #80-00 during the period October 1, 1979 to
September 30, 1980. The subject of research has been the
theory of "Plasma Wave Turbulence and Particle Heating
Caused by Electron Beams, Radiation, and Pinches.® The
period covered is the third stage of a comprehensive re-
search program concerned with the nonlinear behavior of
plasmas subjected to intensely energetic sources.

One of the significant developments in plasma physics
over the past decade has been the theoretical and experimental
progress made in our understanding of nonlinear plasma wave
evolution in response to external sources: A wide variety
of radiation sources such as lasers;ITQ‘ﬁicrowaves:s*A’éhd
radarfﬁ;e‘;nd of electron beam sources, such as solar'electron

r.»( ‘Q,.
streams .8 and laboratory beamg9 can excite plasma wave

instabilities in target plasmas. The waves saturate into a

v

turbulent spectrum,IO and may heat the plasma, accelerate

plasma particles, and/or emit their own radiation. Such

11

processes have been linked to inertial ‘and magneticla

controlled thermonuclear fusion schemes, radar communications '

in the earth's ionosphere, and Type III solar radio bursts.’Ta‘L

The phenomena also bear heavily on certain fundamental

questions of plasma turbulence, such as wave collapse in

phase space, electric-field envelope-soliton evolution,m'14 ‘ .

I3 ¢ i

and the nature of the so-called ®strong turbulence.




Our research on pinches was completed over a year ago.
The present report describes progress which has been made
in the following areas:

l. Electron-beam excited plasma turbulence and
electromagnetic emission;

2. Nonlinear propagation of intense microwaves in the
ionosphere;

3. Radiation diagnostics of plasma turbulence;

4. Experiments to accelerate ions and excite low

frequency turbulence in the laboratory.

II. Summary of Accomplishments

1. Beam-Plasma Interaction and Electromagnetic Emission

Our earlier theoretical work concerning the effects of
an electron beam on Langmuir waves and electromagnetic
emission has now been published (Appendices A and B). An
electron beam injects energy into a range of Langmuir
modes (the injection range). When th: intensity becomes
high enough, wave-wave interactions transfer waves into
an inertial range, and, eventually, a dissipative range in
k-space. 1In the inertial range, the dominant effect appears
to be spatial self-focusing of Langmuir wavepackets, leading
to strong turbulence. The theory developed in Appendices
A and B develops and confirms a picture in which electromagnetic
emission at twice the plasma frequency emanates from the

collapsing Langmuir wavepackets. The nature and intensity




of the emission depend on the details of the Langmuir wave
turbulence. In the work of Appendix A the emission is
assumed to come from the late (supersonic) stage of collapse,
whereas in the later work of Appendix B, a more pronounced
early (subsonic) evolution was found.

In the new work of Appendix C we find substantial
electromagnetic emission in the early stage, an unexpected
result. A three-dimensional model for collapse is proposed
in which the electric field of the wavepacket has a spheri-
cally symmetric modulus and an asymmetric phase. The appropriate
equations are solved numerically. Copious emission in the
early stage comes about from Langmuir wave phase changes
which enable two plasma waves to coalesce into an electromag-

netic wave, with the proper kinematics (momentum and energy

conservation). This paper has been accepted for publication

in Physics of Fluids.

Appendices D and E represent new work concerning the {

effect of a background magnetic field on Langmuir collapse.

Such a field usually accompanies and guides the electron

beam. We have considered the case of a weak magnetic field 1
{electron cyclotron frequency much less than electron plasma
frequency). Even for such weak fields, important effects
can occur. The transfer of energy out of the injection
regime is slowed down, and the ions begin to play a more
prominent role by taking up momentum. In addition, the

real-space wavepackets are shaped into pancakes pierced by




magnetic field lines. An analytic theory for these effects
is derived in Appendix D, in the form of a magnetic virial
theorem. The behavior we have found will undoubtedly
affect emission, but this has not yet been studied. The
paper in Appendix D has been accepted for publication in

Physics of Fluids. Appendix E is the Ph.D. thesis of

James C. Weatherall who has been partially supported
under this grant for the past few years. This thesis
contains a comprehensive study of the effects of a magnetic
field on collapse, and applications to the problem of
Type III solar radio bursts.

Appendix F contains the results of research performed
in collaboration with Prof. John Dawson's numerical group
at U.C.L.A. We have carried out particle-in-cell simulations
in two dimensions, for two particle species with a mass
ratio of 5. The initial condition was a Gaussian Langmuir
wavepacket of intensity and shape determined by the (prior)
evolution of a beam instability. The subsequent evolution
of this (undriven) wavepacket shows a recurrent behavior
in which it breaks up and reconstitutes repeatedly over
several cycles. This behavior seems consistent with
recent theoretical work of Thyagaraja15 of Culham Laboratories,
who has shown that packets which do not collapse, must
recur. It may have general implications for turbulence
and for electromagnetic emission. This paper has been

accepted for publication in Physics of Fluids.
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Finally, we have performed research which is presently

being organized for publication. Dr. G. Benford and his
co-workers at the University of California at Irvine have

16 in which a relativistic

just published experimental results
electron beam of 50 kA current, incident on an unmagnetized
laboratory plasma can produce up to megawatts of radiated
power in the 20-100 Ghz frequency regime (corresponding

to the local plasma frequency). The theoretical explanation16 !
involves Langmuir turbulence of the type we are studying,

but driven by more intense electron beams. Here the

wavepackets were assumed to break up due to modulational

instabilitiy, rather than the self-focus directly. Recently,

we have used our two-dimensional numerical code for

simulating this situation, and have found the hypothesized

break-up to occur as expected.

2. Propagation of Intense Microwaves

This research has been motivated in part by the
recent proposal17 to orbit a geostationary satellite
which would collect solar radiation and transmit energy
to an earth-bound station via microwave radiation at 2.45
Ghz. Projected local intensities in the F-region of the
ionosphere would be about 25 mW/cmz. Our work on the
propagation of this and longer wavenlength radiation
through the ionosphere is described in the paper in Appendix
G, which has been accepted for publication in the Journal

of Geophysical Research. We predict thermal self-focusing




instabilities to be excited in the E and F regions by such

radiation. These instabilities have been observed18 experi-
mentally, recentiy, using a 10 Mhz ground-based radar, at
times when the ionosphere peak plasma frequency is 7 Mhz, so
there is no reflection. Our principal prediction for micro-
waves is that density striations as large at 10%, and
intensity striations of up to 100% may be excited, with scale
lengths of 100 meters.

Thermal self-focusing appears to be generic, and would
affect the propagation of intense microwaves through most

plasmas.

3. Radiation Diagnostics

Our collaboration with Dr. N. Peacock of Culham, on the
development of the "Raman Induced Kerr Effect" (RIKE) as a
radiation diagnostic of plasma collective behavior continues.
As Appendix H, we have included a research memo to Dr. Peacock,
in which the effects of density gradients are studied. 1It
will be recalled that RIKE is a coherent process in which
collective response of the plasma is evoked by the pondero-
motive beat force between two radiation sources (e.g., lasers)
and then detected by scatter off one of them. We have studied
a parabolic density profile, and found under which conditions
the spectral width of the probed collective mode is determined
by intrinsic 1line width, and when it is determined by the

profile gradient (see Table 1, pg. 27 of Appendix H). This

work is continuing.




4. Experimental Program

In the current contract period an experimental program
was initiated. The proposed work for this year consisted
of (i) the construction and development orf a plasma device
for obtaining long-lived wave-driven ion beam segments,
and (ii) the initiation of a study of cross-field ion
acceleration by waves in magnetized plasmas. Both tasks
have been carried out on schedule. It should be noted
that all costs for equipment, supplies, as well as salary
for the senior (faculty) experimentalist, are not borne
by AFOSR, which contributes only the salary of one Graduate

Research Assistant towards the cost of the experimental

program.

The goal of the program is to develop and enhance
the efficiency of processes through which large-amplitude
waves in plasmas are able to accelerate ions. The underlying
principle was demonstrated in 1973: it was shown that |
ion-acoustic waves generated substantial internal ion
beam segments in the stationary state. 1In contrast with
the conventional pulsed beam generation techniques, this
is a steady-state method with about 50% duty cycle, i.e., ]
orders of magnitude more effective, although at present
limited to low.ion energies.

During this initial period we have constructed two

types of facilities designed to overcome the main limitations

on beam lifetime which were encountered in the original




experiment. These are: charge exchange and turbulence.
Specifically, in the presence of a background gas, ions
will charge-exchange with neutrals and effectively be
removed from the beam. At the normal background pressures

of 1074

Torr in Argon, the charge-exchange length was of
order 20 cm, so that at the typical ion speed of order
106 cm sec-l a lifetime of only 20 sec could be expected.
Secondly, the ion-beam segments were found to excite
unstable off-axis ion acoustic waves in a broad spectrum.
These waves in turn scattered ions out of the beam. We
have assembled two sets of apparatus, designed to overcome
each of these limitations, and enable further studies of
the basic process.

A DP-type plasma device was constructed, in which
charge exchange is reduced to a minimum through the use
of confining magnets. DP plasmas are large-volume gas
discharges in which primary electrons, generated by hot
metallic filaments, are electrically accelerated and
ionize a background gas through collisions. Conventionally,

16 18 2

with cross sections in the range 10 ~° to 10 ~° cm‘ and

gas densities of order lO“cm"3 (filling pressures of 1 m

Torr), the primary electron mean free path is of order
102 to 103 cm. It is therefore lost to the walls of
laboratory-size machines after undergoing less than one
ionizing collision on the average. By lining the walls

of the machine with strong permanent magnets, say of 1 K

Gauss, these primaries can be turned around without energy
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loss and forced to traverse the background gas many times,
increasing the ionization efficiency correspondingly.

Note that for 100 eV, the electron gyro-radius in a 1 KG

1

field is less than 10 cm, i.e., the trajectory bending

is very effective.

——

With the aid of Prof. N. Hershkowitz of the University
of Iowa, a foremost expert in devices of this type, who

is spending the academic year 1980-81 with our group, we

have assembled and tested such a machine. We are currently
able to operate it at background pressures of 10-5 Torr
in Argon: at this pressure, the charge-exchange length
is about 500 cm, longer than the device. That is, the R
ion beam life spans its motion across the machine. Large-
amplitude waves have been launched, and experiments are |
proceeding on measurements of ion beam segments generated
by these waves. The device (Figure 1) is fully instrumented
with probes for measuring details of the wave structure.
An ion energy analyzer probe for measuring the ion beam
structure is being designed.
To decrease the limitation on ion beam lifetime due
to turbulence, a novel scheme has been assembled and is
being tested. It is based on the observation that, in 1
unmagnetized plasmas, an ion beam can destabilize a broad
spectrum of ion-acoustic waves, due to the fact that
their dispersion.relation is nearly straight. That is,
the interaction condition that beam speed and wave phase

[}
speed be alike can be satisfied by many frequencies. }
t
]




Conversely, in magnetized plasmas, only a narrow range of
frequencies of waves is allowed. Thus the unstable spectrum
is narrower, and can be expected to have a correspondingly
limited effect on the ion beam. To test this effect, a
magnetized plasma device has been assembled. It consists

of a plasma column generated by microwave breakdown of a
noble gas inside a solenoidal magnetic field of 1 K Gauss

or higher. Ion-acoustic waves are launched by AC voltage
applied to metal grids spanning the column. Probe instrumen-
tation is in place, and the level of background noise in

the machine has been reduced to the point where tests of

the principle can be conducted. The assembly is shown in
Figure 2.

The study of cross-field ion acceleration in a magnetized
plasma was conducted using the Q-machine faciility at the
University of California, Irvine. 1In this instrument,
similar in concept to the device described above, we de-
stabilized ion waves propagating normally to the magnetic
field (the Electrostatic Ion Cyclotron mode). These
waves carry a stfong e;ectric field component in the
direction of propagation, which pushes ions ahead of it
and distorts the ion velocity distribution function corres-
pondingly. Figure 3 shows the resulting perturbed velocity
distribution function, containing an accelerated ion beam
component with energy of about 1 eV, generated by waves
with peak-to-peak potential variations of 1 V magnitude.

The process is being studied experimentally and theoretically;

e — e e e e
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11

we propose to conduct similar studies in our machine as
soon as the scheduled tests of turbulence mentioned above
are completed. The principal advantage of our device
lies in the fact that the Q-machine, although quieter, is
limited to operation using alkali-metal plasmas or similar
substances, in which the electron/ion temperature ratio
is of order unity, whereas using noble gases we have
temperature ratios of order 10 to 102. Since the amplitude
of driver ion waves is a strong function increasing with
this ratio, we can launch much more intense waves, and
correspondingly generate stronger and denser ion beams,
than are possible in Q-machines.

In summary, during the contract period we have con-
structed our basic instrumentation, developed a new concept

which may increase the efficiency of the basic process,

and demonstrated for the first time the cross~field acceler-

ation of ions in magnetized plasmas.
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FIGURE 1

Dr PLASMA MACHINE ASSEMBLY !

FIGURE 2

MAGNETIZED PLASMA MACHINE ASSEMBLY
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Application to Electron Beam-Excited Solar Emissions"
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Radiation from a strongly turbulent plasma: Application to

Martin V. Goldman

George F. Reiter

Dwight R. Nicholson
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than predicted by weak turbulence theory.

I. INTRODUCTION

In this paper we treat the emission of radiation from
collapsing Langmuir wave packets excited by an elec-
tron beam of high velocity and low density. Emission
rates at the plasma frequency w, and the first harmonic
2w, are calculated for a nonmagnetic plasma with pa-
rameters appropriate to the solar wind plasma during
so-called type III solar radio wave emission. The pa-
rameter space for Langmuir collapse and subsequent
radiation is very rich, and many distinctly different
phenomena can occur under different conditions. We
believe the work of this paper deals with one of the
simplest cases (possessing significant measured data),
and probably has at least qualitative significance to
other regimes of strong Langmuir turbulence.

The subject of type III solar radio-wave emission
provides a unique arena for the interaction of modern
nonlinear plasma physics with space physics, In this
paper we shall show that conditions are commonly found
in the solar wind, during type I bursts, when highly
nonlinear evolution of electron plasma waves (Langmuir
waves) can occur. This evolution can take the form of
spatial “collapse™'? of Langmuir wave packets of ini-
tially very low energy density. The collapse is essen-
tially a nonlinear index-of-refraction effect, in w.ich
Langmuir waves are confined by the ponderomotive
force, and intensify and steepen in an unstable manner
which can only be stopped by eventual dissipation of en-
ergy into resonant electrons. A plasma in this condi-
tion is said to be “strongly turbulent.”

The emission of electromagnetic waves from the col-
lapsing Langmuir wave packets is estimated using vari-
ous dynamical and statistical models. Most of these

l lead to favorable comparisons with recent observations
by Gurnett and Anderson® at }AU (astronomical units).

388 Phys. Fluids 23(2), February 1980

Department of Astro-Geophysics. University of Colorado, Boulder. Colorado 80309

Physics Department, Brookhaven National Laboratory. Upton, New York 11973

Department of Physics and Astronomy, University of lowa, low City. Towa 52242

The emission of radiation at the plasma frequency and at twice the plasma frequency from beam-excited
strong Langmuir turbulence, for the case of low-density high-velocity warm beams, is considered. Under
these conditions, Langmuir wave packets undergo (direct) collapse in a time short compared with one ¢
folding of a beam mode. The wave packet energy density threshold for collapse depends only on the
beam temperature and velocity, not on the beam density. Upper and lower limits on the volume
emissivity for harmonic emission from these collapsing wave packets are found. Within most of this
range, the emissivity is large enough to account for observations of second harmonic radiation during
type III solar radio wave bursts. The radiation at the fundamental is many orders of magnitude larger

0031917180 020388 14500 90

electron beam-excited solar emissions

We believe that previous attempts® at calculating this
emission have been inconsistent (see Sec. VI).

One result of increasingly sophisticated and far-
reaching experiments in space has been the establish-
ment of a firmer foundation for the basic physics of
type III bursts. There is now general agreement that
an electron beam is launched during a flarc event on the
sun, and that as this beam propagates out in the solar
wind along a magnetic field line, it excites Langmuir
waves, which in turn produce radiation at the local plas-~
ma frequency and at its first harmonic, As the beam
propogates from the sun to the earth and beyond, it en-
counters local plasma frequencies which progressively
decrease by more than four orders of magnitude. The
measured radiation shows this characteristic drop in
frequency as a function of time. Spacecraft experiments
on board satellites have detected the electron beam,
Langmuir wave, and the emitted radiation, although the
data on Langmuir waves have been rare, and difficult
to obtain, A sketch of the events associated with a type
III burst is depicted in Fig, 1. Measurements have been
made from the earth-orbiting satellites (Ref. 5 and 6),
IMP 6 and 8, and from the solar-orbiting satellites,’
HELIOS 1 and 2,

Our concern in this paper is mainly with the emis-
sivity measurements obtained by Gurnett and Anderson’
at twice the local plasma frequency near HELIOS 1
(near 0.5 AU). In the strongest burst observed by them
(31 March 1976, 18:10 U.T.), a radiztion intensity of
10-'7 W m~“ Hz was measured. This leads to a volume
emissivity (assuming isotropic emission) of

J(@2uw,) =1.6-10"" ergsem” 'sec” sr 7', (1)

Langmuir waves were observed simultancously, with an
energy density (in units of the background particle en-
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These Langmuir waves generally occurred as “spikes”
with characteristic dimensions of 25-100 km or larger.
(Structures of smaller size, such as the collapsing
Langmuir wave packets discussed in this paper, would
be too small to have been detected by the HELIOS space-
craft.) The background plasma parameters associated
with these measurements were »n, =42 electrons per
cm®and k,T,=10 eV (7,=1.2x10°°K). We shall use
these parameters in our calculations.

The plan of this paper will be as follows:

In Sec. II we shall treat the excitation of Langmuir
waves by a typical electron beam associated with type
II bursts and show how the beam determines the shape
and spatial density of Langmuir wave packets up to the
time at which their energy density begins to exceed the
collapse threshold.

Section Il is devoted to the subsequent collapse, and
describes how a steady state is set up in which the
beam acts as a source of energy density, and resonant
wave-particle interaction (Landau damping) acts as a
dissipative sink. Conditions for stabilizing the beam
against quasi-linear plateau formation are also dis-
cussed here. The similarity solutions for collapsing
wave packets in the adiabatic and supersonic regimes
are presented.

In Sec. IV (and in the Appendix) we discuss the gener-
al problem of emission of electromagnetic waves by
the nonlinear currents associaied with Langmuir waves.
It is shown that harmonic emission cannot be of lower
order than quadrupole. Emission cannot occur from
the beam-driven Langmuir waves without some form of
nonlinear saturating wave interactions becausc of ki-
nematical constraints. We estimate the harmonic and
fundamental emission that occurs in the later stages of
collapse by using similarity solutions and constants of
the motion to approximate the Fourier transform of the
emitting currents,

Calculation of the volume emissivity requires that we
know (on the average) how many collapsing wave pack-
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ets are present per unit volume. Models for this “den~
sity of collapsing packets’ are developed in Sec. V,
based on energy conservation in the steadyv-state
power flow associated with Langmuir waves. The vol-
ume emissivity is calculated and compared with the
measured value,

In Sec. VI we present detailed criticisms of other
work on strong turbulence emissivity, In the Appendix
we explain why the collapsing wave packets are mainly
longitudinal,

Il. EXCITATION OF LANGMUIR WAVES BY THE BEAM

We shall assume a simple model of the electron beam
and the background plasma. The beam will be assumed
to be stationary, spatially homogeneous, and having a
Gaussian distribution in velocity space centered around
v, = L¢, with an isotropic half-width, &= jr,:

2 . N .
fb(l')="bexp[_(v_"b) /ZAIZI, pzl'» AIJ‘ :l. (3)
2ra2)3e 2 ¢, 3
The beam density will be taken to be no greater than
10" times the background electron density u . *
ny, T 1070, )

The background plasma is assumed to be a Maxwellian
with density n, = 42, and temperature 10 eV, as in the
experiments at AU of Gurnett and Anderson.? This
implies that »n,- 4.2x10 em™® and r, 1,9 <107,
where ¢, =(k,T,./m,)' * is the electron thermal velocity
associated with one degree of freedom.

We note that the assumption of a time-stationary beam ) ]
is an approximation. Since the beam is injected with '
velocity dispersion at the site of a flare, the faster
electrons will arrive downstream before the slower
ones so that ¢, (and possibly Ar) are functions of time.
The effects of this on the excited Langmuir waves were 1
studied by Magelssen and Smith," who took into account ‘ i
re-absorption of Langmuir waves by the beam, and de~
termined that the beam could propagate over large dis-
tances. A relatively low level of Laungmuir waves re-
sulted (W =~10"". However, the time scale for such ef-
fects is long compared with a collapse time, and we .
have ignored such space-time variations of the beam, i
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In this paper we show that Langmuir energy densities
on the order of W=10~% are unstable against spatial
collapse. These energy densities are a small fraction
of the beam energy unless n,/#, is much smaller than
10-%, This justifies the neglect of the change in the
beam due to homogeneous quasi-linear beam relaxa-
tion. Since the process of spatial collapse takes energy
out of resonance with the beam, we can also view col-
lapse as a potential mechanism for stabilizing the beam
against plateau formation,

The beam distribution of Eq. (3) causes the growth of
a k-space wave packet of Langmuir waves, centered
around the wave vector k,, which satisfies the Cerenkov
condition,

ko= w, i/, (5a)
or

ko kp=v,/1,=9%x1073, (5b)
The resulting growth rate of resonant Langmuir waves
is

/2 2 2 2
Ya_(1\ m(.vz) e (_5)
w, (8) N \AL, 2|+I‘,2L2exp 2 /) (®)
where
Z = (v, Av)(ky~ k) (k)™ (7

We note that the background magnetic field has been
neglected in Eq. (6). This is completely justified, since
the ratio of electron cyclotron frequency to plasma fre-
quency is small (see Sec. VI).

The fastest growing Langmuir waves have k.= 0(k,),
and k, =0. We will determine the k-space shape of the
Langmuir wave packet determined by Eq. (6). At a gi-
ven time /, the wave energy system will have been am-
plified by the factor A(k) = exp[2y (k)¢ ]. We determine
the half-widths by the condition A(k, + Ak) = A(k,)/2. The
parallel and perpendicular half-widths are therefore
obtained from the following equation:

y (Kot 3k) /¥ 5lko) =1 = 1n2/1nA(k,) . (8)
Choosing Ak.)=2x10% (10 ¢ foldings) yields,

Ak In2\'? 1
AR, (a2

%o <1nA) e (9a)
Ak an)’/z Ar 1 Arv
ar (kY ar. - at

ko (lnA t, 4, " (9b)

We note that the perpendicular half-width Ak, /k, is de-
termined entirely from the factor ¥/(¥ + #°) in Eq. (6),
while the parallel half-width Ak, /k, is determined en-
tirely from the factor Zexp(-~Z?/2), The shape of the
k-space wave packet is therefore elongated in the per-
pendicular directions, producing a kind of pancake, as
shown in the two-dimensional projection in Fig. 2,

This model agsumes the amplification of spatially
homogeneous noise, so that the convective nature of the
beam instability is irrelevant. We also note, in this
connection, that a typical excursion distance of a Lang-
muir wave packet in the perpendicular direction (during
a collapse time) is 1 km, whereas the perpendicular
spatial width of the electron beam has been measured®
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to be at least 80 earth radii. This justifies the neglect
of the finite spatial width of the beam in our treatment.

The phases of the Fourier modes in the beam-unstable
Langmuir wave packet will be rundom, since w¢ nave
assumed it is homogeneous white noise being amplified.
This leads to a multitude of wave packets in real space,
with mean spatial half-widths of av =(ak )™ and Ax
= (Ak )~ as depicted in Fig. 2. For the parameters
considered here, a typical real-space packet measures
about 3 by 10 km. This would be too small a packet to
be measured by current spacecraft techniques® at AU,
We shall assume the mean distance between wave pack-
ets to be on the order of this mean size.

This will constitute our picture of Langmuir waves
while they are subject to beam growth, but before they
have reached the critical intensity for nonlinear wave-
wave interactions. We should remark, in passing, that
the beam contribution to the dispersion relation of the
Langmuir waves is negligible because n, 1,2 107" [in-
equality (4)].

l1i. LANGMUIR WAVE COLLAPSE

The electron beam creates the configuration of real-
space Langmuir wave packets just described. The pack-
ets grow in time, When one of these packets is suffi-
ciently intense, it can collapse “‘directly,”” in a time
which is fast compared with one beam growth e-folding
time. This process has recently been discussed at
length by two of the present authors,*'*

A. Predictions of the virial theorem for initially
adiabatic collapse

In brief, the threshold for collapse of a wave packet
depends simply on its k-space widths (in the limit when
its group velocity is less than sound speed, and assum-
ing that its energy density is sufficiently less than the
mass ratio). The critical energy density for an aniso-
tropic wave packet is a slight generalization of the re-
sult in Ref. 2,

BEAM MODES

A NON-RESONANT
MoDES — " % > 1g

COLLAPSE

lewf? lewl?

FIG. 2. Contours of constant Langmuir wave energy density
in real and Fourier space, at an initial time #;, and a later
time {; (after some real-space collapse has occurred). The
initial Fourier-space wave packet consists of beam-unstable
{resonant) modes, with random phases, centered about the
wave vector ky- v‘v,,u,,/:-,,. forming a packet of size &k, by &k, .
In real space, this corresponds to packets of size 3 by 10 km.
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W= 2[(a%)° + (ak ) I/RE}, (10)
provided that

W <216 m/M, (11a)
and

ky/ b < (2/9)on/M) (11b)

where W is the energy density defined in Eq. (1), m/f

is the electron-to-ion mass ratio, A% is the k-space
half-width of the packet, and % is the Debye wavenumber.
The inequalities (11) are the conditions for adiabatic
jons, In the later stages of collapse the ion inertia be-
comes important, and the inequalities (11) are strongly
violated; however, the threshold condition (10) is justi-
fiably adiabatic. From Egs. (5) and (9) we have

Ak, Sk, =2.2%X107% Ak,/k,=T7.5%x10"", (12)
The larger of these dominates in Eq. (10), and
W, =107, (13)

The adiabatic condition (11a) is then seen to be well-
satisfied, but (11b) is only marginally satisfied, Never-
theless, numerical calculations® indicate the validity of
this description under the present circumstances.

Next, we note that the energy W,, represents a small
fraction of the energy density in the electron beam,
when n,/n,=10-%, Under these circumstances

W, = nin i /n,0,~107%; (14)

3

hence, the wave-wave interactions inherent in collapse
occur before the wave-particle interactions governing
homogeneous beam plateau formation. Since the wave
energy of resonant modes never becomes comparable to
the beam energy, the collapse process would seem to
suppress quasi-linear plateau formation!

We also note that W, is independent of the beam den-
sity n,, whereas W, decreases with »#,. Hence, for
n,/n, significantly smaller than 10-°, it is likely that
collapse will be prohibited because not enough energy
is available in the beam to elevate the waves to thres-
hold energy. Measurements indicate that 10~" is prob-
ably an upper limit for type III bursts.

Thesge facts also help guarantee that the collapse time
is shorter than a beam growth time. The collapse time
predicted from virial theorem arguments® is

w’t9=4[w/—3—(Ak/kD)(W_ Wth)l/zl_l . 15)

(Near threshold, this is of the same order as the col-
lapse time associated with similarity solutions.') A
typical value for ¢ is about 0.1 sec, compared with
about 1 sec for y;'. For n,/n, less than 10-° the beam
instability will be even slower,

A model for steady state must go farther, and follow
the power injected by the beam to its ultimate dissipa-
tion in the plasma, Our qualitative picture of this pro-
cess is exhibited in Fig. 3. Here, the “state” of a Lang-
muir wave packet is characterized by two parameters:
its energy density W, and the square of a characteristic
spatial half-width Ax (in units of the Debye length).
These two parameters form a kind of two-dimensional
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phase space for Langmuir wave packets, Packets above
the dashed line are subject to collapse, according to

Eq. (10). Owing to the instability of the beam, a wave
packet executes a trajectory in the phase space, as il-
lustrated in Fig. 3. Packets of a size set by the beam
parameters [Eq. (9)| grow until they exceed threshold.
They then quickly collapse to smaller size and larger
W. This collapse becomes supersonic when the udia-
batic conditions (11) are violated. We assume that the
collapse continues until Av becomes on the order of
about 5 Debye lengths, and that the collapse then ceases,
with power flowing into electrons due to wave particle
interaction. The power balance this implies will be
treated explicitly in Sec. V. We note from Fig. 3 that
the packet size decreases by two orders of magnetic,
and its energy density increases from 107" at threshold,
to order unity when Landau damping can occur,

In the adiabatic regime, above threshold, the Lang-
muir wave evolution should be accurately described’ by
the cubic nonlinear Schrodinger equation

078+ .V°8+|8°8=0, (16)
here, f =w,!, F=rk,’v3 , and &§ is the dimensionless
envelope of the plasma oscillations, The total real
Langmuir wave field E, is given in physical units in
terms of the envelope § as

E, = Re[(32m1)'/%(v, + 8,8 exp(=iw,t)|. %))

In the early adiabatic stages of collapse, the evolution
of a given initial wave packet can be described by virial
theorem arguments.” In addition to the threshold v,

2
. e
we 11 ke r /4™
|
LANDAU:
DAMPINGy
|
|
. /| VERY NONLINEAR
|
|
| COLLAPSE
|
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16 m/M po IL
I ADIABATIC
| T~
w* b | =~
F | ~ DIRECT COLLAPSE
E l THRESHOLD:
i W & Rpran)
! : GROWTH
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l L 1 4 f ] ll
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FIG. 3. Trajectory of the state of a collapsing wave packet,
shown in a “phase” space, in which a packet is labeled by its
square width, (Ax)?/A}, and its mean energy, W (| 8| 0
47ng. Energy is injected into packets of a width set by the
beam instability. The collapse is initially adiabatic, then
supersonic, and finally ends in wave-particle energy transfer.
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{Eq. (10)] and the collapse time ¢, |Eq. {15)], these ar-
guments predict the dependence of the square width
(6r% of the packet, on time,

(6r9 =(6rd,1 =13/t (18a)

and also the dependence of the energy density, if one
assumes that the shape of the packet remains Gaussian

W(t)x(BrDH=P/2, (18b)

where D is the number of spatial dimensions of Eq.
(16).

B. Adiabatic similarity solution

In the later stages of adiabatic collapse, it is likely
that the packet has distorted in shape and has begun to
approach the shape of the similarity solution.'! The
similarity solution is of the form

8=(f,-1)"*R), (19a)
us¥®/(F, =12, (19b)

When (19) is inserted into (16), an ordinary differential
equation for R results

Ji(l+u-0,)R+}82R+ |R|*R=0. (19¢)

We can arbitrarilly set |R| to be of order unity at its
maximum,. Then, we find that the collapse time of the
adiabatic similarity solution is

wyt,=8W, (20a)

where we have assumed the spatial average (|§|%
=118, 2. Note, this differs from the virial theorem
prediction, although when W is several times W, they
are numerically close. (In essence, the similarity so-
lution does not “remember” initial scale lengths, such
as Ak™'.) From (19a) we also get a prediction from the
similarity solution about how W varies with time

w,(t)=w(O)/,~1). (20b)

This is in asymptotic agreement with (18b) only in two
dimensions. Also, the half-width of the collapsing self-
similar solution canbe muchnarrower than (6»%).

C. Supersonic similarity solution

As W increases, the collapse becomes supersonic, in
the sense that the inequality (11a) is violated, At this
time, the cubic nonlinear Schridinger equation (16), no
longer provides a correct description, and we must
employ the so-called Zakharov’® equations, which allow
for ion inertial effects and electromagnetic dispersion.'’
These equations may be written as

. )
95 + 90 48 6x6x-ﬁ>é=o, 21a)

(’ i 3, 2

(3% - g7m =92 8|2, (21b)

where # is the ion density fluctuation, and the dimen-
sionless units are!®

- 2m . 2/m\/?
f -—3- ﬁwpl , r-g(w) rk,,
(22)
A
peSM oy L
2m n, 8,
392 Phys. Fluids, Vol. 23, No. 2, February 1980

where 1/M is the electron-to-ion mass ratio, and 3, is
the usual ratio of ion specific heats. The real electric
field of the Langmuir waves in physical units in terms
of the dimensionless envelope 8is

E. =Re[(n/M)"/2(321n0.3)'*& exp(=iw,t)]. (23)

in the extreme supersonic limit, only the u, term need
be retained on the left side of Eq.(21b). Equations (21)
then have a well-known three-dimensional (supersonic)
similarity solution,'™!! given by
=0, ~1)'R(w), u=F (t,-1)*3,

R=(l =14 (),

(24)

where f  is the supersonic collapse time, and |R| is
again chosen to have a maximum equal to unity. This
implies that the time for supersonic collapse is given
(in real units) by

wpt o= I();z,/'&\I)WsUI"/3 R (25a)

where W, is the value of &’ .’ 8mn0 at the time super-
sonic collapse begins. 1f the supersonic stage follows
an initially adiabatic collapse, as we are assuming here,
we can roughly take W, =16 m/M [from (11a)], so that

w,! = (3/16)2(M/m) . (25b)

We shall use these similarity solutions later to calcu-
late the emission from collapsing Langmuir waves.
There is numerical evidence that certain initial field
configurations relax into similarity solutions,'”~!* but
the analytical foundations for why this is so remain
largely unknown. It is also useful to note that the di-
mensionless dispersion collapse time 7 is simply
(12)-172,

In summary, the role of Langmuir collapse is indi-
cated in the energy flow diagram in Fig. 4. Most of the
electron stream energy remains intact during its prop-
agation from the sun. A small fraction of this energy
[see Eqgs. (10) and (14)] goes into Langmuir waves due
to the bump-on~tail instability. Some of the resulting
Langmuir wave packets collapse due to nonlinear wave
interactions. During the collapse, a small fraction of
the Langmuir energy is radiated away, mainly at 2w,.
However, most of the Langmuir energy is eventuajly
dissipated by coupling to e'ectrons and ions *n the late
stages of collapse, which we do not treat expsicitly in
this paper.

It is important to note that a strong conversion of the
Langmuir waves into (transversely polarized) radiation
is not expected, because the parameter ¢ 31, is
much greater than one, and the early fields are entirely
longitudinal, This matter is discussed in some detail
in the Appendix. In the next section we treat the conver-
sion into radiation by familiar techniques for given cur-
rent distributions, and obtain expressions for the emis-
sion from a single collapsing Langmuir wave packet.

IV. EMISSIVITY OF RADIATION FROM LANGMUIR
WAVE PACKETS

The transverse nonlinear currents, J"', associated
with (longitudinal) Langmuir waves can lead to emission
of radiation at 2w, and at w,. We assume a model of
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FIG. 4. Energy flow during a type III solar radio burst. Most
of the energy remains in the beam. A smaller fraction goes
into beam-unstable Langmuir waves, some of which collapse.
A small fraction of the Langmuir energy goes into radiation.
When a packet has collapsed to a size of several Debye lengths
it surrenders its energy to electrons and ions.

independent emissions associated with the current of
each of an assembly of Langmuir wave packets. The
emissivity of a given wave packet is then a simple func-
tion of the nonlinear current j*. By standard techni-
ques, we find

dP _cr*1 (T

o=@ Ff ditEXB

4

T d“’leJ"'(K w)|?sin®e , (26)

where r is a position vector from the current distribu-
tion to an observation point in the radiation zone, the
wave vector K is defined as K =(#/c)[w? - w3(r)|'/2, and

COLLAPSING LANGMUIR
WAVE - PACKET

P 172
rf2 2
0, Ko Efra,20)]

PHOTON
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¢ is the angle between J™(K, ) and . Equation (26)
takes into account the fact that the observation point is
imbedded in the plasma with a local plasma frequency
w,(r) which varies on the scale of an AU.

The geometry is illustrated in Fig. 5. Note, the
factor sin’¢ guarantees that only the transverse com-
ponent of the current contributes to the emission. The
time average is over a time T which is long compared
with the dominant frequency w (I’ may be set equal to
the collapse time),

We are interested in nonlinear currents centered about
a dominant frequency w,

I, ) =" (v, 1) expl~iwyl) +e.c. (27

where the time dependence of the envelope j™(r,!) is
slow on the scale of w;'. Making use of this slowness,
Eq. (26) can be expressed in terms of the envelope
current as

%~K°“’8:CT"’ ! f At K, N 'z, (28a)
where
K,=?/clw? - wi(r)]''2, {28b)

is the principal wave vector of the emitted radiation,
and w,(r) is the plasma frequency at the observation
point. Also, ¢, is the angle between ¥ and j” (K, w =0).

We now need to develop expressions for the appro-
priate nonlinear currents. These currents arise from
the beating of first- or second-order electron density
fluctuations with the velocity of electrons oscillating in
the Langmuir field.

The current which gives rise to emission at the plas-
ma frequency is third order in the Langmuir field

478 37 (x, 1) =w}(On, ' )E, , (29)

where 0n, is the density driven by the ponderomotive
force in Eq. (21b), and hence second order'? in the
Langmuir field E;. The relationship between 61, and
the dimensionless » is given in Eq. (22). We note that,
although E, is entirely longitudinal, the product ox,E,
has a transverse component, in general. Also note that
in the adiabatic limit 61, reduces simply to -|&|? [see
Eq. (16)].

FIG. 5. Emission from a single col-
lapsing Langmuir wave packet. Pho-
tons of frequency w and wave vector Ky
are radiated into the solid angle dQ
about the observation point r. Note
this observation point is embedded in
the plasma [with local plasma fre-
quency w, (r)l.

= 0BS. POINT

Goldman, Reiter, and Nicholson 393




I
i
I
I
l

—

The current at 2w, is second order in the Langmuir
field E,

4ﬂa,J;j,p(r,l)=w§(26nl/no)E,_. (30a)

Here, 6n, is the first-order density of electrons os-
cillating at the plasma frequency. (The factor 2 arises
because the emission frequency is 2w,.) An expression
for 6n, follows immediately from Poisson’s equation
for the Langmuir field E,,

n =-VeE /4ne. (30b)

A. Emission at 2w,

It is easy to prove that there can be no dipole emis-
sion at 2w,. The standard multipole expansion for
J"U(K,?) is generated by writing the spatial Fourier
transform of the current in terms of the Kronecker
delta §,, =V _»;:

17K, 0 = [ e, 01, ) exploik or). (31)

In the dipole approximation, K*r is set equal to zero.
After an integration by parts and application of the con-
tinuity equation, this yields j"'(K,#) = -iw,d, where d is
the dipole moment of the nonlinear charge density dis-
tribution. Hence, whenever the spatial integral of
§"!(r,!) vanishes, there is no dipole emission. We can
show that this is the case for harmonic emission by
using Egs. (30) for the nonlinear current J7! . I E, =
Re|& exp(-iw,/)], then J7! =Re[§?! exp(- Zzw:I)I where
the envelope, j,, (r) is proportional to (V- §)§, from
Eg. (30). Since é is predominantly curl-free (see the
Appendix), there follows the vector identity

w/m 6,-,6'8)
Irw, i(sigl"‘T~ (32)

Hence, fd’rj vanishes, by the divergence theorem,
and there is no dxpole emijssion at 2w,.

Jou ,(r =

To find the emissivity for harmonic emission in terms
of the field & of a Langmuir wave packet, take the
spatial Fourier transform of the current given in (32).
Upon integrating by parts

f{f’rexp -iK,* r)(&,o ﬁ,f_’é)

(33)

For simplicity, let us assume that the Langmuir field
direction remains essentially parallel to k, during
collapse. We write

’2»,(K071)m 4"‘., m

8(r, 1) - kA explit/2), (34)

where the (real) scalar amplitude /A, and phase 6, de-
pend on space and time. From Eq. (33), we find

:Mfd‘rexp{i(ﬁo'r-w“zy {35)

b, 4nw,m

The magnitude of the emission depends in detail upon
the space-time evolution of A(r, /) and 8(r, /). We shall
assume that A? collapses, and that 8 starts out as
2k, ‘'r and does not evolve pathologically.
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We note parenthetically, however, some recent evi-~
dence’” that the nonlinear behavior may consist of
periodic breakup and reconstitution, rather than colla-
pse, due to ponderomotive effects in the phase. Since
no theoretical understanding yet exists concerning the
competition of such behavior with collapse, it is not
taken into accout in the present paper. We assume here
that collapse continues down to scale lengths of several
Debye lengths.

In the very early phases of collapse there cannot be
substantial emission because of the momentum mis-
match, K,- 2k,, in the phase fagtor in the integrand of
Eq. (35). There is strong phase mixing, as we shall
soon show. As A” collapses more and more, the phase
mixing becomes less important. By the time the
collapse has become supersonic (W >16 s /M), emission
can occur,

The amount of emission depends sensitively on the
shape of A*, as supersonic collapse proceeds to still
smaller scales. There have been no calculations of the
three-dimensional evolution of A* and 6 predicted by
Zakharov equations. Model equations studied by
Budneva et al.'' suggest that a small collapsing core
breaks away from an initially Gaussian packet, leaving
the (essentially) Gaussian corona behind. The core
eventually tends toward the form of a similarity solu-
tion to the equations.

We shall estimate the current in two different ways.
First, we shall assume that the entire Gaussian corona
collapses. This will lead to an upper bound on the
emissivity. Then, we shall assume that only the (much
smaller) core collapses, and tends toward a supersonic
similarity solution. This will give less emission. The
actual emissivity probably lies between the two limits.

In order to present a coherent discussion of the var-
ious spatial scales, we introduce the following defini-
tions: Define L, (/) as the half-widths of A°

A%(z=L.,»r - 0) Az 0,» L)='4°(0,0), (36a)
and /., as the scale lengths of the phase
l...m,8/.9,.6 . (36b)

We now discuss the implications of the time depen-
dence of L{1) and 1{/) for the size of the current, j;,‘,b in
Eq. (35). We begin with the time /- 0 at which the beam-
amplified Langmuir wave packets begin their collapse.

1. Onset of collapse (t=0/

Initially, the packet moves at a phase velocity equal
to the beam velocity, so the phase is

6 2k,°r, |l (20,1, - 0]. (37a)

The half-widths L. and L, correspond to the half-widths
of the initial packet defined by Egqs. (9) and (12}

L,(0)- (3%, L,(0)=(ak)". (37b)

If we agsume that A” is Gaussian, the integral for j,,

can be performed. It is proportional to
Jow, * €xPl= (K, - 2k;)*L1/4], (37¢)

which is vanishinglv ¢ nall. This result corresponds to
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the well-known fact that beam-driven Langmuir wave
packets cannot emit type III radiation at 2w, in the ab-
sence of nonlinear (or other) interactions which broaden
their k-space widths. This is because momentum con-
servation demands that the photon wave vector K, be
equal to the sum of two Langmuir wave vectors k;, and
Kg,» Which lie within the packet. Since K,=vV3w,/c |by
(28b)] and k,=w /v, by (5a)], we see that this is not
possible for beams with speeds », of order j¢ or small-
er. The situation is illustrated in Fig. 6. Essentially,
the wave packet is too narrow in k space to contain
Langmuir wave vectors k,, and k,, sufficiently smaller
in magnitude than k;, to add up to K,. The mathematical
expression of this is that the exponent — (K, ~ 2k,)°L2/4
in Eq. (37c¢) is initially a large negative number.

However, as the packet collapses, (K, - 2k,)°L2/4,
tends to zero. The reduction factor exp —(K, — 2k,)°L3/4
is no longer effective, and the time L, has become
small enough for the following condition to be satisfied:

Lk, 1, (38)

for no phase mixing (here, we have used the fact that
K, is of order k,, and assumed that /, does not get much
smaller than L,). By this time, the packet has broaden-
ed™® sufficiently in k space, so that it contains pairs of
wave vectors [such as k, and k, in Fig. 6(b)] which pro-
perly sum to K,. Put in another way, the phase factor
in the integrand of Eq. (35) is no longer effective in
phase-mixing the integral by the time inequality (38) is

LANGMUIR PACKETS IN k-SPACE

Ko (PHOTON)

t=0
w
-5 _P
ko = b Yy
t< te
Ko (PHOTON)
LY kp
PLASMONS
Ok Sk,

MOMENTUM MATCH: K + ky=Kq
FOR EMISSION
FIG. 6. Momentum conservation requirements for emission
of harmonic radiation (at 2u,) by a wave packet. Init{ally,
the packet is centered around kj, and i8 too small to contain
two plasmon wave vectors which sum to the photon wave vec-
tor K. After some collapse, the packet has enlarged in k
space, and contains enough plasmon pairs of the proper mo-
mentum to conserve.
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satisfied.

To proceed further, we need models of the time de-
pendence of L,. The most optimistic of these assumes
a collapsing Gaussian corona. This leads to an upper
bound on the emissivity.

2. Coronal collapse model

In the adiabatic stage we can use the scaling implied
by the virial theorem [see Egs. (18)]

L Sk, VA =r/6p02. (39)

"L

We also assume that ¢ - 2k, r. This is acceptable in
the adiabatic stage as long as L k.- 1, since plasmon
momentum is conserved.” Another conserved quantity
is the plasmon number, '*?

N= I d*r A® - const. (40)

Equations (39) and (40), taken together with the as-
sumption of a Gaussian shape, give us the time depen-
dence of the space-averaged energy density W(/) |see
also Eq. (18b)]:

w(0)

W(I)ZW. (41)

For phase mixing to disappear, Eq. {38) must be satis-
fied. Using the expression for L in Eq. (39), this gives
the time /, at which a collapsed corona begins to emit
harmonic radiation

(A= 12/Rp 2= 2k, /ky - 1712, “2)

However, at this time, according to Eq. (41), the ener-
gy density W(/,) will have increased by three orders of
magnitude, and the collapse will be well into the super-
sonic regime. If the entire corona collapses enough for
phase mixing to be negligible, then the current in Eq.
(35) becomes proportional to the plasmon number N in
Eq. (40). Since N is an invariant of the Zakharov equa-
tions (21), it is conserved even in the supersonic stage
of collapse. We can therefore find an upper bound on
j._,up by using N to evaluate the integral during the super-
sonic regime. N can be evaluated from the initial
Gaussian conditions

N 8Vap y'ag,)r?

aran by WU 0)

kb kW, “3)

-1927
Using this as the value for the integral in Eq. (35) and
inserting into the emissivity formula (28a) yields an
upper bound for the emissivity during the supersonic
stage of collapse

4P
aQ

max

108.\ 37 sin®e,

I TAYWAAY _‘__E)" n
K(A"'u) (u,'h) [(( "‘»})u.r,e * (443)

The angular factor is
sin®h,=1 =20k, K,)2-1]2 (44b)

This factor has its largest value (of unity} when the
radiation comes out in a 45° cone about the beam direc-

’,T"JP
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tion, which is in agreement with the known'' coupling of
radiation at 2w, to two Langmuir waves in parametric
instability theory.

We note, in passing, that the maximum total energy
radiated, according to Eq. (44), is 107? times the total
energy in the Langmuir packet. Hence, it is indeed
valid to ignore the effect of radiation losses on the
collapse process (see Fig. 4).

3. Core collapse,; similarity solutions

A very different picture emerges if we assume that
the collapsing packet quickly assumes the form of a
similarity solution. In the adiabatic stage, the packet
width of a similarity solution, L , can be considerably
smaller than that of a Gaussian corona |Eq. (39)].
Budneva ¢/ al.!' have studied the adiabatic collapse of
a spherically symmetric scalar field obeying a cubic
nonlinear Schrodinger equation [the scalar version of
our Eq. (16)]. The coronaof aninitially Gaussian packet
substantially above threshold was observed to remain
essentially stationary, while a narrowly spiked core
collapsed and approached the form of a similarity solu-
tion. A repetition of these calculations near threshold
also seems to show seli-similarity. Under such condi-
tions we might expect much less emission.

The width of an adiabatic similarity solution is obtain-
ed, roughly, by setting =1 in Eq. (19b). Then, the
half-widths, L2 and L%, of the adiabatic similarity
solutions are

LB =LAk W, /WP A -1/t P12, (45a)

Note, the half-widths are independent of Ak,, since
W,,=24(3k )°/k. In effect, the similarity shape is
independent of the initial shape, and is narrower,
particularly when W -i/,,. However, in our case, W
is only slightly greater than W,,, so that the half-width
L3 appears to be proportional to (ak,)"', This is much
smaller than the parallel half-width of the initial Gaus-
sian packet, L{ - (ak,)'. The presumption is that a
narrow spike is superposed over the broad Gaussian
corona. Pereira and Sudan'® have shown that initially
anisotropic two-dimensional packets tend to become
more isotropic as collapse gets underway, so the scal-
ing of L =L} is not surprising. We must note, how-
ever, that Eq. {(45a) has no validity until collapse is
well underway.

The scaling of the energy density of an adiabatic
similarity solution with time is given from Eq. (19a)

w(0)

W(I):m. {45b)

Comparing (45a) with (45b), we see that, in three
dimensions, the half-width volume decreases at a faster
rate than the energy density increases, hence,

[d-" . P2
rA rr(] _I—) R (45¢)

c

where C indicates integration over the core. The con-
tribution of the core to the N invariant is therefore
small. (Phase mixing may still be expected at larger
r, due to K, and the self-similar phases.) We now
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calculate the (smaller) emission from the similarity
core.

From Egs. (45a) and (38), we find the time /, at which
the collapsed core can begin to contribute to the current,
douy without substantial phase mixing

(=578 sk k=174, (45d)

According to (45b), the cnergy will have increased by

a factor of 16 at this time, and the collapse will shortly
enter the supersonic stage. We shall assume that all
the emission occurs in the supersonic stage, since by
then a supersonic core of similarity form may have had
time to develop.

The half-widths L?*, of a supersonic similarity solu-
tion are obtained from Eqs. (22)-(24) by setting .  1:

2/3 [ -1
L?.*:Lr:(l-”—) [g(lz)'“(%) kD] : (46a)

where / - 0 is now the onset time for the supersonir
stage of collapse, and W - 16 m /M. (We note that

Jo d% A? is small but invariant in the supersonic stage.)
At /=0, the phase-mixing criterion (38) yields & L™
0.3, so that the current j,, can be evaluated with the
phase factor in the integrand of Eq. (35) ignored. The
result for the current may be written as,

, 9@'(3 M)"’
m—2— —_
by it (2705) L (46b)
where
. v 5 B
11_,:1\(,,fd*u(k,kﬁ%’?), (46¢)

and R is the similarity field, defined in kq. (24). As
discussed beneath that equation, R has a maximum
value equal to one. Its half-width is also of order unity,
so we expect L' tobe or order unity as well. The
emissivity that follows from this current is found [via
Eq. (28a)] to be

dP(* 3°v3 M [(L) H

- EARE. S — 2,0 )

/[Q!-'u,, 647 ml\c/ ¥} N “
where we have approximated I, © 1. This estimate

rives substantially less emission than that ot the coronal
collapse model, Fq. {(44), because the core is so much
smaller than the corona. For the parameters we have
been considering, [dP/dQ *% is about 107" times small-
er than |dP/dQ T2, ’

There is a clear need, here, for numerical work to
determine the time-dependent shape of a three-dimen-
sional collapsing packet, under type I conditions.
Unfortunately, the Zakharov equations should not be
solved in fewer than three dimensions, because the N
integral of a truncated simitarity solution only goes to
zero with time in three dimensions [cf. Fq. (45¢)]. One
cannot use spherical or even cylindrical symmetry,
because such symmetries require zero field at the ori-
gin, ' due to the vector nature of the envelope. A full
three-dimensional numerical solution of the vector
Zakharov equations is prohibitively expensive at this
time. However, some insight has been gained by further
studies of model equations for a scalar envelope, such
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as that of Budneva ¢/ al.'' In particular, we have found
narrow cores in packets close to threshold in recent!®
numerical work using Budneva’s model, which suggest
that the emissivity may lie closer to the lower estimate
of Eq. (47).

B. Emission at the fundamental

The treatment of emission of radiation at frequencies
close to the plasma frequency is somewhat more chal-
lenging. We must have approximate frequency matching
between the Langmuir waves and the radiation: w2+ ¢?Kj
=42+ 3:%;. This means that the wavenumber K, of the
fundamental is much smaller than the wavenumber %, of
the Langmuir waves. |K,=.3Jr ., ¢ <k, as long as
r, ¢~ 1 (see the Appendix).] In order to conserve mo-
mentum, one requires either dynamical ions or strong
spatial inhomogeneity. In the present calculation we ig-
nore background plasma inhomogeneity, so we do not
allow local or global density gradients to absorb the ex-
tra momentum. In the conventional discussions of fun-
damental emission it is usually assumed that ions or
ion-acoustic waves take up the required momentum.
The corresponding “weak’ turbulence process involves
the scattering of a Langmuir wave (plasmon) off ions
and its transformation into a photon: [—~i+/, This may
even occur as a stimulated process (instability),

We shall make the case here that fundamental emis-
sion can also occur in “strong” turbulence, i.e., from
collapsing Langmuir wave packets. It is clear that
emission cannot occur in the subsonic stage of collapse,
because the ions are adiabatic, and momentum cannot
be conserved. However, fundamental emission can oc-
cur in the supersonic stage when the ions are dynamic.

(An argument has been advanced that a collapsing
wave packet cannot emit radiation at o, because the as-
sociated density cavity “traps” it. This argument is
specious because the wavelength of such radiation is
much longer than the characteristic size of the cavity,
The emission occurs from this packet as a whole, in a
manner analogous to the radiation by an antenna, This
is stated mathematically in the Appendix.)

The current which governs the fundamental emission
is given by Eq. (29). The Fourier transform of its en-
velope is
. iw ) b, (r,1)

i, (Ko )= —= [d®rexp(-iK,-r) ——= & (r,/). (48)
“» 4r ",

In the adiabatic stage of collapse, On, is proportional

to —|8|®. The dominant phase in the integral is then in
exp(-iK, - r) which arises from & ,(r,/). This causes the
integral to phase mix to zero [see Eq. (35}], so that
there is indeed no emission in the adiabatic stage.

In the supersonic stage, the prediction from the sup-
ersonic similarity solutions (21)-(25) is that

=19 qope 3 (ﬂ'_"_)m__.___l
lu'(KO") knn (12) ﬁ 47 (1_,/,5)111 lu
(49a)
where
I~ j 4 un(w)R), (49b)
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and the dimensionless density and field supersonic sim-
ilarity solutions 5 and R are defined in Eq. (24). We
have omitted the phase factor exp(iK,-r), which is al-
ways of order unity. In the absence of phase mixing,
we expect the magnitude of I, to be of order unity. The
current is then inserted into the emissivity formula
(28). The time-averaging interval 7' is chosen to be /,
the collapse time. The result may be written as

L | e [ R e
a2 647 ey VAN

It is of interest to compare this with the similarity so-
lution prediction of emission at the harmonic |Eq. (47)]:

?

dP/dQ %,

k
_ Ry
dPdQIsy, ky i M (1a)

The large factor ¢*/+2 in Eq. (51a) arises because the
harmonic emission is quadrupole, whereas the funda-
mental emission is dipole. The small factors &, &,
and n/s M correspond, respectively, to the smallness
of the wavenumber and the higher-order field depen-
dence in the fundamental emission.

The ratio on the right side of Eq. (51a) is about 0.2
for our parameters, indicating almost as much funda-
mental as harmonic emission from a single collapsing
packet in its supersonic phase, provided that the simil-
arity form is justified. It is also of interest to compare
this value with the value obtained from weak turbulence
theory. The weak turbulence estimate'” depends upon
the assumed distribution of { £, ¥), Taking the ratio
of the result predicted by (50) to the weak turbulence
result gives
AdP-d iy, e
apraary NN (31b)

where .’ depends upon the assumed form of the distribu-
tion of wave energy, and can vary by three orders of
magnitude with assumptions that Smith'’ takes to be
reasonable. We will take =1, Here, \ is the number
of particles in a Debye cube; N =10 for the plasma we
are considering. The numerical value of the ratio in
(51b) is therefore approximately 10¥, The enormous
enhancement over the weak turbulence result is readily
understandable. The weak turbulence processes require
a spontaneous fluctuation in the ion density on a scale

of the Debye length, In order that the longitudinal fluc-
tuations can scatter into transverse fluctuations, these
have amplitude for occurring that decreases as I \.
The collapsing wave packet makes its own density fluc-
tuation, and thus this factor is absent. To be more pre-
cise, the power radiated depends upon

ar f (O 5oy, 20D E(r)>4l"r.

dQ ", "y

The weak turbulence assumption is that the correlation
function can be factored. Since (E(0)*E(); willonly be
significant over distances the order of 3, this is
roughly
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If
5N - f d>rou(r),
Ir 1<hy
then

dp ~ 3f EN ON

ag W <T T)
and by the central limit theorem (ONSN) « N. Conse-
quently, dP,dQ * WX,* N. In the strong turbulence
case, Ou is driven by E and is not statistically indepen-
dent, so there is no {actor of .V in the expression for
the power radiated, resulting in many orders of magni-
tude more emission.

In fact, fundamental emission is observed for bursts
which are interpreted to originate near the sun, with
intensities which are comparable to the harmonic inten~
sities from the same burst.,'® This is essentially inex-
plicable from the weak turbulence viewpoint, which
fails by many orders of magnitude to predict sufficient
radiation in the fundamental. The collapse mechanisn:
discussed here needs to be modified to treat the situ-
ation near the sun, but the argument given here is quite
general and suggests that strong turbulence effects can
provide an explanation for the observed radiation.

At | AU there has been no observation of fundamental
radiation, which, in view of the relatively large ampli-
tudes predicted by (51b) is apparently inconsistent with
the similarity solution predication. This may be due to
refraction by random inhomogeneities in the background
plasma density which could have the effect that only ra-
diation emitted at the location of maximum density
would be able to escape. Inasmuch as the pulse of ra-
diation emitted by the soliton has a frequency spread of
only about 10™., inhomogeneities of the order of only
®n/ne=10" would have a profound effect.'” We note that
a uniform gradient on a scale smaller than or compar-
able to the random inhomogeneities would eliminate the
self-trapping.

V. DENSITY OF COLLAPSING PACKETS AND
VOLUME EMISSIVITY

Thus far, we have only found expressions for the em-
ission from a single collapsing wave packet, We must
now go farther, and estimate the number density of col-
lapsing packets (in the various stages of collapse), in
order to calculate the volume emissivity and make com-
parisons with measurements,

Our model for steady state was described beneath
Eq. (15), and is summarized in Fig. 3, Langmuir wave
packets receive energy from the beam, collapse, and
finally surrender their energy to particles via wave-
particle interactions. The wave packets in real space
fill the volume occupied by the beam. Their “discrete-
ness” arises from the interference of beam-amplified
random-phase Langmuir noise. We may define a wave
packet roughly by finding the spatial mean value |&(r)|?
over some large volume, and letting the packets con-
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sist of the simply connected volume in which :§(r) *

'§(r)1%. The packets will be distributed in terms of
energy and in terms of spatial widths. At a given in-
stant, some will be growing (due to the beam), some
will be in various stages of collapse, and some will be
dissipating their energy into electrons. In the ensem-
ble or space average sense a steady state or quasi-
steady state is assumed to exist,

The instantaneous rate of work perforimed by the beam
on the waves is

ok y k )
Pu= [ G008, ’*L(%Fl;— &%, (62
where 3 (k) is the growth rate of Langmuir waves in re-
sonance with the beam [Eqs. (6) and (7}, 7, is the peak
growth rate, and R indicates integration over resonant
modes only. The modes in resonance with the beam

are those lying in the phase space volume centered
about k,, within the bounds of the beam-determined
widths, ak. and ak, asin Fig. 2 [see, alsou, Egs. (9]
In real space, those wave packets which are well into
collapse will not have appreciable Fourier components
in the resonance region. [n order to estimate /7, we
next need to consider how the packet and energy densit-
ies are related.

The packet densities are related to the total Fourier
energy spectrum by

Ak . .
— & “)=ftl ‘r &(r) "= v w, o, (53)
[, 5.,

where
1'=f &(r) *d'r (54)
¢

is the energy in one packet (denoted by the subscroipt 1Y)
and n, is the density of packets with given energy 7.

We expect most of the total energy to reside in packets
which satisfy or almost satisty the condition for col-
lapse. These packets will all be clustered about a4 crit-
ical value, I, with a density »,. We then have approxi-
mately,

d°k U
W é’k RER WG 0 (55\
‘The mean spacing of these packets is assumed to be on
the order of their volume, which is determined by the
beam. This “close-packing’ assumption tells us that
n, is on the order of the inverse volume of a packet, or

rlO:,L|(AI\")(M-A)2|, (56)
where Ak, and Ak are the half-widths given by Eqs. (9).

The average resonant mode energy depends on which
of two distinct packet-evolution scenarios oceurs:

In the first case, the number of packets which remain
slightly beluow the collapse threshold during one col-
lapse time is much greater than the number collapsing.
This might be expected on the grounds that the collapse
time is much less than y ', so, at any given time, there
are still a large number of wave packets below the crit-
ical #' contributing to the beam power input in Eq, (52).
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A second possibility is that there is a quasi-periodic
behavior in time with period on the order of );‘, in
which there is cyclical resonant mode depletion. Re-
sonant mode energy builds up during the growth phase,
creating a majority of energy-contributing packets on
the verge of collapse. They all collapse together quick-
ly, causing a severe depletion of resonant mode energy
for a time on the order of 3,'. During this time, ampli-
fication of noise (and perhaps residual fragments of
packets) occurs, and the process repeats. A long-term
time average gives a resonant mode energy equal to
some small fraction F of the total mode energy given in
(55).

In either case, the average input power is [from Eq.
(52) and (55)],

P =1, FrgVUs, (57

where £ =1 according to the first scenario, and £ «1
in the second. It is not easy to decide between these
scenarios on the basis of existing theory or numerical
simulation,® so we shall leave F undetermined, for the
moment. (The problem with numerical simulation is
that the “box’ size would have to be chosen large
enough to contain a statistically significant distribution
of wave packets. This seems to be prohibitively costly
at present.)

The spatial density »_ of collapsing packets can be es-
timated by equating P, to the rate of energy flow P,
where,

P/t VU,. (58)

Here 7, is the appropriate collapse time. Equating (57)
and (58),

n =y T(Fn,) . (59)

The density of adiabatic collapsing packets is then ob-
tained by letting 7, equal the adiabatic collapse time ¢,
given in Eq. (20a)

n,4= 0/ @) B/ W)(Fn,); (60)

and the density of supersonic collapsing packets is ob-
tained by letting 7. equal the supersonic collapse time
¢, given in Eq. (25b)

= (Fn,). (61)

We can use Eq. (61) to calculate the volume emissivity:

1f we combine Eqs. (44), (61), and (56), we obtain an
upper bound on the volume emissivity for emission at
2w,:

__-dp|»=
Jzu’ ”"E ’“.
1 p v M &)(_kn_)( w )(4)
== —_— 2]
8 Fw’ m(k,, ak, Wi e T

We evaluate this for the foliowing parameters:
n,=40 cm™, 6,=10eV,
ny/n,=10"°, ap,/v,=1/3, W=2W,,
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and Ak, and Ak as given by Egs. (12). The maximum
growth rate is taken |[from Eq. (6)] to be

max 172 N 2
pial (L) Mo f Ty
ViR 8e My \ A,

The resulting evaluation gives
Jy, =2 <107 Fergsem™sec srt . (63)

This is to be compared with the measured value in Eq.
(1), which gives 2 x 107**, The upper bound provided by
the theory when £ is larger than 10 is adequate to
make collapsing-packet emission an attractive candid-
ate to account for observed radiation at twice the plas-
ma frequency,

Even if the collapse quickly approached similarity
form, so that the core emissivity, Eq. (47), were more
appropriate than the coronal emissivity, Eq. (44), the
volume emissivity with F of order unity would still be
consistent with the observed emission. However, as we
discussed below Eq. (47), no one has demonstrated that
three-dimensional Langmuir packets just above thres-
hold will quickly converge to the form of similarity so-
lutions. We note further that only the most pessimistic
assumption of core emissivity and cyclical resonant
mode depletion (F << 1) leads to a theoretical volume
emissivity below the observed levels,

As an important side issue, it is worth pointing out
once more that either of our statistical modsls (F=1,
or F «<1) is consistent with the absence of quasi-linear
beam plateau formation. This is because the wave en-
ergy density of beam-resonant modes can never greatly
exceed the collapse threshold, which is well below the
beam energy density |see Eqs. (13) and (14), and the
discussion which follows|.

Vi. CONTRAST WITH PREVIOUS THEORETICAL
WORK

We wish to point out the main differences between the
theory proposed here and an earlier attempt at treating
emission from stable solitons, due to Papadopoulous
and Freund.®

A central difference hinges on the role that the mag-
netic field plays in the evolution of the solitons. Papa-
dopoulous and Freund assert that the effect of the mag-
netic field is to produce stable, that is, not collapsing,
essentially one-dimensional solitons. This argument
relies, in part, on their claim that the magnetic field
plays an important role in the linear stage of beam-
mode growth and distorts the real-space wave packets
into one-dimensional “pancakes.” We assert that the
magnetic field is irrelevant in shaping the beari-mode
packets for the ratio of w  /w,=10% at 0.45 AU.

The argument that Papadopoulous and Freund rely on
is stated more explicitly in Smith ¢/ al.,* where they
claim that the angular spread in wave vector space of
the growing modes excited by the two-steam instability
is less than 1° for «_ «,=10"% This conclusion is er-
roneous, and based on an incorrect application of a
standard formula for the growth rate of the unstable
modes in the presence of a magnetic field.?
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y KPR+ KD | g (KRE),

where Rg =2V, w, and

»

2
vla) =t/ §1"/'1, (a)exp[~ %(1 + [—\’VIR—B> ],
where I,{z) is the Bessel function. Papadopoulous and
Freund claim that the growth rate is only significant
when A K~ 1, basing their claim on the approximation
of ¢{a) by the term with/ =0. This approximation is
totally unjustified for larger a, however, since A Ry
={(1/Vy) («, «,)=10, and approximately 20 terms
need to be kept in the series. If one does this, one

find that (0)=1, ¢(7)=0,9989, i.e., the dispersion
relation is extremely insensitive to A, Ry for these val-
ues of A K5, Furthermore, it should be noted that in
the limit of vanishing field, K Rz - =, all terms in the
series must be summed. Papadopoulous and Freund’s
result is obtained by taking the strong field limit of the
dispersion relation, and then applying it for weak fields.

Their argument that the solitons are stable is based
on the assertion that they are essentially one dimen-
sional. Since the assertion is false, there is no evi-
dence which suggests that they are indeed stable. We
note that Petviashvili?* has argued that there are indeed
static localized solutions of the equations one obtains
by including the magnetic field in the linear part of the
equation of motion (A2). It is not clear whether such
solutions really exist (since he relied on a numerical
solution of the equation to prove existence), or if they
are stable. In any case, the linear and transverse di-
mensions of these entities will bear no relation to the
dimensions of the packets formed by the modes that
grow in the presence of the beam, and we think that
they will play no role in the problem.

A second major difference lies in the relationship
between the linear growth rate of the unstable beam
modes and the average level of energy in the plasma
oscillations W, The picture of Papadopoulous and
Freund® is that the energy is transferred out of the
beam modes by the modulational instability, acting
uniformly throughout the plasma. By an argument that
they think reasonable, they then conclude thaty;~7,,is
the condition for a steady state. 7,, has the same de-
pendence on the parameters of the problem as 1.7,
where 7, is the collapse time of the solitons, and in
this way they obtain v, =W, W m /M, oryg < (m/
M» 2w 2 Wom/M,

QOur picture is that the transfer of energy is due to the
direct collapse of wave packets, which occurs when the
energy in the unstable modes has grown so that W
z (AK)?;, W is fixed by the velocity spread, not the in-
tensity of the beam. The collapse does not occur
throughout all space, and, in fact, the density of col-
lapsing packets, n,, can be computed from an energy
balance equation

reW=01/1)WL)n,,

as long as v« 1/7,n <1/L). Whenyy>1'7,, the
collapsing solitons are closely packed, and the physical
s*wation is similar to the picture that Papadopoulous
and Freund propose in that i, would remains at 1"L'c1

[34
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as 3 increased, and 7, 1 7., However, this regime
is inappropriate for the type Il parameters, in which
the ratio of beam to background density », », is never
expected to exceed 107, so thaty,- (1 10)1 7). As
shown by Goldman and Nicholson® direct collapse is the
dominant energy transfer mechanism in this regime,
not the modulational instability.

Vi{. CONCLUSIONS

In conclusion, we believe the models we have developed
in this paper for electromagnetic wave emission from
collapsing Langmuir wave packets, give the best pos-
sible state-of-the-art estimates for such emission.
Reasonable models give predictions whichare well above
the volume emissivity observed during type I bursts,
Eq. (1). Further numerical work on the dynamical and
statistical details of collapse would be highlv desirable,
but the need for working in three dimensions may make
the cost prohibitive |see discussion below Eq. (47)].
Further theoretical work is also necessary, parti-
cularly in the refinement of our statistical assumptions.
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APPENDIX: DERIVATION OF EQUATIONS FOR
TRANSVERSE AND LONGITUDINAL FIELDS

We want to show that if ¢’ 1 --1, then a consistent
solution of the equations of motion for a plasma can be
obtained in the form

8 =6,+8,/(c'),

where 8§,=-Y¢ and |§, ~8,. The field § is always
predominantly longitudinal. The longitudinal part &,
satisfies a modified form of the Zakharov equations,
and 8, is the radiation field. We begin with Egs. (21),
with all tildas omitted from dimensionless quantities

3 .
i%-r"v'xvxé«:-\?(v-&):g&, (A1)
(82 - 320y - 92 |6 12, (A2)

where ¢’ =¢ V31, and will be assumed * 1. If we make
the ansatz € =8,+8, 'c’?, 8,= -V, we find, to lowest
order in 1/¢'%
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i_aTo_vax81+V(V'80)=g‘sm (a3)
ia(v;é )_1‘12v2(vx81)_—_("va(’g80>1 (A4)
92

—872‘-—6‘727,=72‘80'2' (AS)

We Fourier transform (A4) for the transverse field
&, in time and invert the resulting Helmholtz equation:

1 rexplKir-+'1) ] ) 3
vx..- o [ S vx(zs" Lo
K=w/(')%. (A6)

Integrating (A6) by parts and substituting in (A3), we
have

K8, ,+ Loxox

[exp(iKlr-r’l)
4n

lr - v

3 2 (AT)
Consider fundamental emission (near the plasma fre-
quency w,). If we set K =0 in the integral on the left
side of (AT) it is just the transverse part of the current
(n8,/2). Since for any vector field, Alv,)=A, (v,
+A,(v,t), where ! and ¢ designate the longitudinal and
transverse parts of the vector, we find that § , satisfies
the equation

x| 28,0, A% +9(7+ 8, =(ﬂso) .

i %0, 0(v-8,)- 380) , (A8)
af 2 !

the corrections due to finite values of K being of order
1/¢'. Equations (A8) and the divergence of (A1) imply
that

. L 2

gV 8.+7(v:8))=0, (A9)
and hence if V-8 ,=0, initially [or at least O(1 ')] it
will be zero for all time, and the solution of (A6) can
be takea to be

The problem therefore breaks up into two parts: the
solution of the equations of motion for the longitudinal
field (A8) determined entirely by the longitudinal part
of the current (bn/n,)8,, and the radiation produced by
that field, determined by the transverse part of the
current (A10). The emissivity formula (28a) which we
have used can be derived from (A10),
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The supersonic similarity solutions and plasmon num-
ber invariant arguments we have employed for the field
& are based on the field equation (A1). Since we have
just demonstrated that the transverse part of § is of
order (') times smaller than the longitudinal part,
our solutions can also be regarded as satisfving (A8).

We note that if second harmonic terms are included in " 1
the current, these will have a negligible effect on the i ;
motion of &, The radiation due to these terms is cal-
culated from (A10) with the appropriate current, and
K=(3)1"/e).
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The nonlinear Schrodinger equation provides a model for Langmuir evolution at low energy density and
wavenumber. This equation is studied using virial theorem techniques. Stationary solitons and pulsating
solitons (related 1o “‘breathers") are found in one dimension, as well as collapsing packets in two or more
dimensions. Initial wave-packet collapse thresholds and times are found, with and without constant
collisiona! damping. In three dimensions, a narrow collapsing core is observed to break away from an
initial Gaussian packet and become asymptotically self-similar with time.

1. INTRODUCTION

It was Zakharov' who first pointed out the relevance
of optical self-focusing phenomena to the nonlinear be-
havior of large amplitude Langmuir waves, Whether the
waves are electromagnetic or electrostatic is of little
consequence. The associated ponderomotive force
pushes electrons out of a spatial region, and they drag
the ions along. The lowered density creates a higher
index of refraction in which rays undergo total internal
refraction and can be trapped if the nonlinearity is
strong enough. In one dimension, this nonlinearity can
exactly balance the linear dispersion (diffraction) of a
wave packet, leading to the formation of an envelope
soliton. In two or more dimensions, nonlinear refrac-
tion can permanently exceed dispersion. When this oc-
curs, a stationary balance is impossible and the packet
collapses spatially. The collapse threshold can occur
at initial Langmuir energy densities which are still
mahy orders of magnitude smaller than the background
electron energy density; so, simple nonlinear models
are expected to provide a good description of the early
stages of collapse.

In the so-called Zakharov equations,':? the (slow time)
electron density in the Langmuir wave equation is al-
lowed to be nonlinear. Quasi-neutrality is assumed,
and the (ion or electron) density obeys a second, ion-
acoustic wave equation with a source term proportional
to the ponderomotive force of the Langmuir waves.
These coupled equations have been used extensively®* ®
to deseribe Langmuir collapse., They provide the dy-
namical basis for what is often called “strong” Lang-
muir turbulence.

In the early stages of collapse, at low wave energy
densities, the time-dependent (inertial) term in the ion
density equations is negligible. The ions are then
adiabatic, and the density is proportional to the nega-
tive of the ponderomotive force. Under these condi-
tions, the envelope approximation to the Langmuir
wave equation leads to a Schrddinger equation with cu-
bic nonlinearity.

This paper is concerned with the effects of spatial
dimensionality and collisional damping on solutions to
the nonlinear Schrddinger equation for a vector field

¥ present address: Institute of Mathematical and Physical
Sciences. University of Tromsd, Norway.
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envelope . Goldman and Nicholson have recently
shown® that the nonlinear Schridinger equation provides
a good model for the early nonlinear evolution of cer-
tain beam-excited Langmuir wave instabilities. When
the beam growth rate is slow compared with the non-
linear (collapse) time scale, the role of the beam is
essentially only to determine the shape of a “linear”
Langmuir wave packet, which is then used as an initial
value for the undriven nonlinear Schrédinger equation.
Under these conditions, virial theorem techniques'
have been used to find the threshold and collapse time
of two-dimensional® Langmuir packets. Two-dimen-
sional theory and numerical analyses*® show that such
direct adiabatic collapse is very likely to play an im-
portant role in the saturation of beam instabilities at
very low beam densities. An important example is
furnished by the solar-generated electron beams re-
sponsible for type III radio bursts.*

One of the purposes of the present paper is to show
how the assumption of near-Gaussian spatial behavior
of the Langmuir field leads to a closure approximation
in the virial theory. With this approximation, we are
able to estimate the threshold and find an upper bound
for the collapse time of three-dimensional Langmuir
packets. Additional numerical work, based not on the
virial theorem but on the Schridinger equation for a
spherically symmetric scalar field, shows a self-sim-
ilar collapsing core developing out of an initial three-
dimensional wave packet close to threshold.

In one dimension, the virial theorem with closure ap-
proximation leads to very simple predictions of pulsat-
ing solitons which are consistent with the results of de-
tailed numerical solutions’ based on inverse scattering
theory. The pulsating solitons have amplitudes slightly
higher than for the corresponding stationary (sechx)
solitons. They are closely related to “breathers,”
which are strictly periodic bound states of two solitons,
The one-dimensional nonlinear Schrddinger equation
has been used extensively®® as a model for nonlinear
behavior of deep water waves. The recurrence ob-
served by Yuen and Ferguson® in this connection may
be closely related to pulsating solitons and breathers.

Other observations in the present paper have to do
with the competition between modulational instabilities
and collapse, and with comparisons between the virial
theorem and similarity solutions, A number of these
observations are based on similar phenomena in non-
linear optics,'” in which a laser beam undergoes total
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self -focusing at moderate intensities, and at higher
intensities break-up into filaments.

We have derived a virial theorem for the nonlinear
Schrddinger equation with constant damping included.
In two dimensions, this results in a dissipative thresh-
old for direct collapse, enabling us to predict the role
of collisional damping in Langmuir collapse.

The plan of this paper is as follows: In Sec, 1l we
treat the nonlinear Schrddinger equation using general
virial theorem arguments. In Sec. III we explore the
evolution of initial Gaussian wave packets in one, two,
and three dimensions. Section IV is devoted to the ef-
fects of damping on collapse. Section V deals with self-
similar behavior, both in general, and for the special
case of three-dimensional spherically symmetric col-
lapse of a scalar field., In the Appendix we study the
conditions of validity for the nonlinear Schrddinger
equation model of Langmuir collapse (i.e., the adia-
batic ion and electrostatic field approximations).

iIl. CONSERVATION LAWS AND VIRIAL THEOREMS

The most general way to derive conservation laws
for field equations is to exploit the invariance proper-
ties of the corresponding Lagrangian., The Lagrangian
density for Zakharov’s equations (see the Appendix) is
given by Gibbons et al.!* In the limit of electrostatic
waves and adiabatic ions, their expression reduces to

£=1i(8%8, - 8,.8%) - 1(V, 8NV, EN+4(6,802. (1)

(We employ the usual summation convention over re-
peated indices.) From the Euler— Lagrange equations

B 3L _BL
at 55:'68; ’

(2)

the nonlinear Schridinger equation follows
i8+iv28+ |8|26=0. 3

Here, we have used the variational derivative of the La-
grangian L = [ £d%r,

oL _or oL
68% 08* T "ta(v,8%)

Note that we have treated §, and 8% as independent gen-
eralized coordinates. Variation with respect to &,
gives the coriplex conjugate nonlinear Schrédinger
equation. The relation between the dimensionless units
employed here and the physical units is given by ¢

- wyt, r~kor/V3, and |8 |2~ |8|*/[32mn(6,+6,)]. The
electron plasma frequency is w,, the Debye wavenum-
ber is k,, the background plasma density is n,, and the
electron and ion temperatures in energy units are 6,
and 6,. & is the envelope of the electric field, 8(r,?)
=Re[8 exp(-iw,t)].

4)

The conservation laws for plasmon number, energy,
and momentum follow generally from Noether’s theo-
rem'? and the invariance of the Lagrangian under a
gauge transformation 8 - 8 exp(i¢), under translation in
time, and under translation in space, respectively. Al-
ternatively, they can be obtained directly. Continuity of
plasmon number density, |&(r)|?, follows directly by
multiplying the nonlinear Schr3dinger equation with &+
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and subtracting the complex conjugate, giving the con-
tinuity equation

81&1°
8¢

+Vv-8=0, (5)

where 8 is the plasmon current density
8,=(1/2i)(8*v,6,-8,V,6%). (6)

Energy and momentum conservation can be derived
from the following (D+ 1)-dimensional energy-momen-
tum tensor

T = =8L & 8L ﬁ,,
“” 9(a8,/0x,) Bx,  8(88%/6x,) dx,

£, (M

where the indices p and v can assume values 0,1,...,
D, and x,=¢,(x,,...,Xp)=T.

From the Euler~Lagrange equations (2), and the fact
that £ does not depend explicitly on time and space
(translational invariance), we easily verify that

vMTuv=01 “1”=0,1,--.,D. (8)
This is a set of (D+1) continuity equations, one for en-
ergy

a3
a7 tVQ=0, (9)
where the energy (Hamiltonian) density 3¢ and the en-

ergy flux vector Q are defined as

K= =To=3[V,8)V,8¥) -(8,8%)7], (10)

Q,=-T,,=-Re(v,82,), u=1,...,D, (11)
and one equation for each momentum component

¢

8—;+vuTuv=0’ byv=1,...,D, (12)

where the momentum density ® and the stress tensor
T, are defined as

®,= T,y =(1/2i089,6,-86,9,8"), v=1,...,D (13)
T, =Re(v,819,8,)+L5,, u,v=1,...,D. (14a)

Note that the momentum density @, is here identical to
the current density 8, in Eq. (6). The time derivatives
in £ can be eliminated by means of the nonlinear Schrj-
dinger equation (3); and by applying the relation Vv-§
= V28 (valid for electrostatic fields; see the Appendix),
we find

&= -3[|8 [+ V-Re(8*v- 8)], (15)

which inserted in Eq. (14) gives T, in the simple form
of Goldman and Nicholson®:

T, =Re[(v-8)v 81] -46,[|8|*+ V- (Reé*V- 8)].
(14b)

The three continuity equations can be integrated to
yield the following conserved quantities, assuming lo-
calized fields: N= [ |§|*a®r, H= [ d°r, and P
= f @®d°y. They can also be used to explore the parti-
cle-like behavior of a wave packet by defining the av-
erage of any quantity using the normalized plasmon
number density |§|?/N as a weighting function
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0= [ (L) avy.

If we multiply Eq. (5) by r and integrate by parts, we
find the Ehrenfest theorem for the velocity of the cen-
troid coordinate of the wave packet

8,(r)=8/N=P/N=const. (16)

Similarly, by Eqs. (5) and (12), and again using § = @,
we can prove the following virial theorem for the time
evolution of the mean-square spatial deviation (6»%

= [(|8 |*/N) |r =(n)|*d®r:

0%(br) =2 [1-3- f T,,d% - (%)2] (17)

From Eq. (14) we find T,,=23¢+$(2-D) |8 |*
+{D/2)V-(Re&*V- §), which, inserted in Eq. (17), gives

8x(6r*)=24+(2-DX|§ D, (18a)
where
A=2H/N -S§*/N? (18b)

is a constant of motion. By integrating twice in time,
we get

(67*)= At*+ Bt+ C+(2 = D) f‘dt’ ["dt”(|8|2), (19)
0 1]

where B=28,(5v%,_, and C= (6r°),,,. This is the result of
Goldman and Nicholson.® If the number of spatial di-~
mensions D> 2 and the conserved quantity A<0, it fol-
lows that (6r%) will collapse to zero in a finite time.
This general result is based on the assumption o adia-
batic ions and electrostatic fields, both of which are
eventually violated when (5% becomes sufficiently
small (see the Appendix),

Thus, in the late stages of the collapse, the collapson
may radiate ion-acoustic waves as well as electromag-
netic waves. If these effects are not sufficient to stop
the collapse, it will finally be stabilized by Landau-
damping when (6»*)*/2 becomes of the same order of
magnitude as the Debye length A,. (We believe wave-
particle interactions to be the dominant stabilization
mechanism.) The useful form of the virial theorem for
the nonlinear Schrddinger equation depends on the iden-
tity S=P. This identity is not satisfied by the more
general Zakharov’s equations. Hence, a useful virial
theorem that can describe the late stages of a collapse
has not been derived. At the present time, the most
fruitful approaches to these problems seem to be nu-
merical integration of Zakharov’s equations and parti-
cle simulations.

I1i. GAUSSIAN PACKETS
A. Threshold and collapse time
We treat an initial Langmuir wave packet of the form
8(r,t=0)= -V [p,exp(-ak%*/D) expliky r)],  (20a)

where we assume that the k-space width of the packet,
Ak, is much less than the wavenumber £,:

(=Ak/ko «l1, (20b)
(In the Appendix we shall see that ¢ << 1 is the condition
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for neglecting electromagnetic effects,) We note sev-
eral features of this initial wave packet: It is purely
electrostatic, since it is the gradient of a potential.
As long as Ak «<k,, the field § points essentially in the
k, direction and has a maximum value

8= |5mu(t=0)lzko¢’or {20c)

where ¢, is assumed to be real and constant. If we
evaluate the mean packet momentum density 8/N, we
find

S/N=k,[1+0(e)]. (21)

The factor D in the exponent of Eq. (20a) is equal to the
number of spatial dimensions considered. It is in-
cluded to assure that Ak? is indeed the correct mea-
sure of the k-space width of the packet: To justify this
interpretation, we note that the Fourier transform of
(20a), (with D in the exponent), leads to the correct k-
space width measure, namely,

D
v+ f |8.|2|k-ko|2(§,,ka=(‘\k>2, (22)

after using the inequality Ak <k,

The physical quantities and invariants defined in Sec.
II can be evaluated for the initial field of Eq. (20), and
expressed entirely in terms of §,, Ak, k,, and D. For
example, to zero order in ¢,

N=8%(Dn/2ak%)P'2, (23)
(67 ,= (D/2ak)?, (24)
(|6 5= 8/2P7%, (25)
The invariant A, defined in Eq. (18b), is
S |2 &2
EF_,E Akt o3t (26)

The threshold for collapse for D=2 (two dimensions) is
A<0. This is also an upper bound on the three-dimen-
sional threshold:

82|, = 2% 2ak°. (1)

For our Gaussian initial packet, the integration con-
stants B and C in Eq. (19) are easily evaluated. We
find B=0, and C=(D/2)°/ak% From Eqgs. (19) and (26)
the time ¢, follows

t,= |C/A|'*=D/28k%P ~1)" 2, (28)

This is the virial theorem prediction of the collapse
time for D=2, and an upper bound on the collapse
time for D=3. The quantity P is defined as

P=8%/2"2ak2, (29)
When D=2, P is the ratio of field energy to threshold

-energy. We shall use P in our treatment for arbitrary

D, although its interpretation as wave to threshold en-
ergy holds only for D= 2.

B. Gaussian approximation

In general, as a packet develops nonlinearly, it does
not preserve its Gaussian shape. U P is much greater
than one, the packet may be unstable against “break-
ing-up” into smaller packets (modulational instabil-
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ity'®). One-dimensional “breathers” may have many
spatial oscillations when P> 1,

In three dimensions, even very close to threshold,
self-similar behavior? develops asymptotically as the
collapse proceeds. Using a scalar nonlinear Schri-
dinger equation, Budneva ef al.” have shown that an in-
itial three-dimensional Gaussian packet with P> 1
soon develops such a feature, In Sec. V we show that
such a feature also develops when Pz 1 (near thresh-
old). A quickly collapsing core of similarity form rises
at the center of the packet. This core becomes singu-
lar, and its width goes to zero for nonzero {6»?), How-
ever, the threshold for collapse and the early time be-
havior of {6r%) are well described by the virial theorem
methods we are about to describe,

Assuming that the packet remains approximately
Gaussian, a closure scheme for Egqs. (18) may be
formulated with D=1 or D=3, The problem is with
the quantity (]&|®, which is not an invariant, We shall
make the (Gaussian) approximation that

(|8 |9=@N(or?r2/2, (30a)

where @ is assumed constant, We may evaluate @ at ¢
=0, using Eqs. (23)-(25). To zero order in ¢, the re-
sult is

Q=(D/4mP/2, (30b)

Inserting Eqs. (30) into the time-evolution equation (19)
for (6»*) enables it to be integrated by potential theory
methods. A first integral is

E/2+ V(E)=E, £=(6r%. (31a)

Here, E is an arbitrary integration variable, and the
potential V(£) is given by

V()= =24f - INQEV-P/ 2, (31b)

Equations (31) are convenient for studying effects of
dimensionality on the evolution of solitary wave pack-
ets. Calculations of characteristic times, such as pul-
sation and collapse times, are easier if we express the
potential in terms of the normalized coordinate n= ¢t/
£,.0» Where &, o= (D/2ak)? is the initial mean-square
spatial width of the wave packet

V=(D*/2)[(P - 1)n - Pp*=?/2] (32)

Note that the potential for the initial packet (n=1) is
V(£,.0)=~D*/2 and, hence, it is independent of the in-
itial parameters. We study the implications of the po-
tential of Eq. (32) for various cases:

D=1, For A<0, (P>1), the potential has the con-
cave shape of Fig. 1. For a Gaussian packet the poten-
tial has a minimum at 7,=4(1 - P™)"? and a zero point
at n, =(1 - P*')y2, This allows bounded, oscillating so-
lutions about the equilibrium point n,. For P=2 we
find that n,=1, which is the initial coordinate, thus
giving the stationary equilibrium solution correspond-
ing to the well-known nonlinear Schrddinger equation
soliton & = asech(ax) exp(i a*/2). Since 7,>1 for all
P>1, and n, -1 a8 P—-=, it is clear that full collapse
never occurs, For sufficiently large P the oscillations
about 7, will be so large that the minimum 7 will be
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FIG. 1. Pseudo-potential V() for D=1 @ = &v3/E+H ).

below the limits of validity of the nonlinear Schrddinger
equation as given in the Appendix.

Assuming that (P - 2) is sufficiently small, our theory
gives pulsating solutions corresponding to the bound
states near the bottom of the potential well in Fig. 1.
{6x* oscillates periodically, and, by the invariance of
f dx |8 |*, sodoes (]2,

This behavior appears to be related to certain nu-
merical solutions obtained by Satsuma and Yajima,’
who apply the inverse scattering method to solve for
the time evolution of an initial wave packet of form

&(x,0)=asechx. (33)

When a=1+¢, and ¢ <1, they also observe oscillations
in |8 |Z,,, but these oscillations slowly relax, presum-
ably due to “continuum” radiation of Langmuir waves.
We do not observe such damping of the oscillations,
probably because continuum radiation is excluded by the
assumption of localized fields in the spatially Gaussian
closure approximation.

The validity of our treatment of periodic pulsations
of one single wave packet requires that the packet not
break up due to secondary instabilities in a time short-
er than the period. The possibility of such a break-up
is not accounted for in our Gaussian model. The period
is obtained by integrating Eq. (31) using Eq. (32),

r=FRPY/ ||, (34a)
where the function F(P) is defined by the integral

dn

AP)=2 L f ' (34b)
VI h [Prt/i-(P<1)p-1]t/2 "

Here, 7, is the turning point. The positive sign is for
P>2, (n,<1), the negative sign for P> 2(n,>1). F(P)
is plotted in Fig. 2. The period predicted by our Eqs.
(34) is in good agreement with the numerical results
exhibited in Fig. 2 of Ref. 7. As P~1°, the period
goes to infinity.

The growth rate of secondary instabilities such as
modulational instability and parametric decay®® is v,
~ }8,]% 1If welet f=1v,!, be the number of ¢ folding
needed for the noise to grow to nonlinear levels, we
get

t/t,= F(P)/f.

The value of f depends on the noise level from which
the unstable waves are amplified, however, even very
conservative estimates give f2 10. This means that
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FIG. 2. Functions F(P) and G(P) versus P.

breathing and break-up times are of the same order of
magnitude for 2< P< 10%, Break-up instabilities are
effective only if the packet size is larger than the
shortest unstable wavelength: (6»?}/2=1/(2ak)> ),
=1/|8,| or, equivalently, P2 2V2r%= 28, If this
threshold is exceeded, the wave packet will break up
into smaller packets on a time scale of the same order
as the pulsation period. We do not expect our theory
to apply under these conditions.

A different way to view one-dimensional break-up
behavior when P> 2 is provided by the work of Sat-
suma and Yajima.” They also studied initial packets of
the form given in Eq, (33) for g=1, 2, 3 {see their Fig,
1). The case g=1 corresponds to the usual single sol-
iton, but 2= 2 and 3 correspond to breathers, which
are exactly periodic pulsating bound states of two or
three solitons. The case a=3, in particular, shows
markedly non-Gaussian behavior, as the packet splits
into two and three narrower packets in the course of
its periodic behavior. (Similar behavior was also ob-
served by Yuen and Ferguson,® in what they call “com-
plex” recurrence.) I we set the area under our Gaus-
sian packet equal to the area under their sechx packet,
we obtain a relation between our P and their a

P=1a®*/V3. (35)

From this we see that g=1 corresponds to P= 2 in the
single soliton result. The case g= 2 corresponds to P
=9, which is a somewhat lower bound for validity than
found from consideration of modulational instabilities.

For P<1 (A>0), the potential in Fig. 1 is monotoni-
cally decreasing for all >0, so that any localized
wave packet will disperse spatially with time. Break-
up, recurrence, or collapse will never occur.

D=2, Inthis case, the term containing (|8 [*) van-
ishes, and no approximation is necessary in the virial
theorem. The potential V(¢) is linear with slope -24,
giving collapse for A< 0, and spatial dispersion for 4
>0. Threshold for collapse and collapse time are
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FIG. 3. Pseudo-potential V(1) for D=3 @= $rd/6r)y).

given by Eqs. (27) and (28), respectively.

D=3 (see Fig. 3). The potential for A<0 grows
monotonically from minus infinity at £¢=0, approaching
the straight line -24¢ as £~ ~. Consequently, col-
lapse occurs for all initial wave packets, and an upper
bound for the collapse time is found by considering col-
lapse along the linear potential -24¢. This gives the
expression of Eq. (27). The convex shaped potential ap-
pearing for A>0 has an unstable equilibrium for n,
=[2(P™ -1)]"%/3, Collapse for a Gaussian wave packet
occurs when 55> 1, or

p>2. (36)
The threshold condition P> 1 for D=2 correspornds to
the threshold condition & 2> 2a%%, while Eq. (36) for D

= 3 requires §2>(2*/%/3)ak® This means that the
threshold is slightly lower in three dimensions.

The virial theorem prediction for the collapse time,
valid for all P> %, is easily obtained by integration of
Eq. (31),

t.=G(P) 8,7, (37)
where G(P) is defined by the integral

L3 dr
G(P)~n£ ERERT TR

(38)

which is plotted in Fig. 2.

The collapse time predicted by (37) is an upper limit,
We shall see in Sec. V that a self-similar core can col-
lapse faster than (5r%).

The threshold condition for break-up, that the packet
size is larger than the smallest unstable wavelength,
now becomes P>V 2(r/3)%~ 1.6, while the ratio

t./t,= G(P)/f, (39)

is smaller than unity only for 0.7<P<10. Hence for
large P (P> 10), a wave packet should break up into
smaller packets before it has had time to collapse. If
the smaller packets have P in the range where ¢,/¢,<1,
they will collapse. This succession of break-up and
collapse has been referred to as indirect collapse.®

Similar phenomena are well known in nonlinear op-
tics.” A nonlinear laser beam with P >-1 breaks up into
intense filaments, whereas when P is closer to one, the
beam self-focuses as a whole.
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IV. EFFECT OF DAMPING ON TWO-DIMENSIONAL
COLLAPSE

We next introduce a local damping term in the form
iy8 on the left side of the nonlinear Schrédinger equa-
tion (3). The conservation laws, based on the integrals
of Eqs. (5), (9), and (12) are modified in the following
manner;

(8,+2y)N=0 or N=N,exp(-2y¢). (40)

Since there is no driver, the plasmon number decreases
exponentially with time. The momentum behaves the
same way

(8,+2y)P=0 or P=8=§,exp(~2yf); (41)

however, the energy H has a more subtle evolution
equation

(8, + 2y)H=yN(|8|. (42)

An initially negative H may become positive if the ef-
fective source on the right side is large enough, Suffi-
ciently large dissipation causes the nonlinear refrac-
tion term (c |8 [*) in H to decrease faster than the dis-
persion term (x |V § {%). Hence, H and A eventually
change from negative to positive, and collapse stops.
The virial theorem takes the form (for D= 2)

(8,+ 2¢)(8r=24, (43)

Assuming an approximately Gaussian wave packet, Eqs.
(30) imply that (| 8| *)= (D*/72%)%/ *6y*)"P/ *N, exp(-2yt),
which can be ingerted in Eq. (42). We restrict our
treatment to the case D=2 for which Eq. (42) may be
written in the form

8,A = (y/n)(Ny/(6v%) exp(~2yt). (44)
In Eqs. (43) and (44) we make the following substitutions
r=t/t,, v=vt,, (45)
x(r)= 52D (07, yir)=pitirs (46)

where ¢, is the collapse time of Eq. (28). The resulting
equations are

8, x=yexp(2yr), 8,y=x", (4"
with initial conditions

x(0)=1/2a"%, x'(0)=va™/?, (48a)

y(0)= a2, as=,/(1-PY), (48b)

This initial-value problem has been solved numeri-
cally for various values of P and a. For a given P,
there exists a critical value a,(P). For a<a,, the
packet collapses completely. For az a,, the variable
x defined in Eq. (46) decays to a minimum, x,,,, and
then increases. The packet size (8r%) agsymptotically
approaches a constant, due to the balance between lin-
ear dissipation and linear dispersion. This can be seen
from Eqs. (47). As x—~=, y goes to a constant, and x
approaches exp(2yf). From the definition of x, this im-
plies that (8r% approaches a constant. From Eq. (43),
we see that (5r® -~ A/2y% In the asymptotic limit, only
linear dispersion contributes to H, so A— {(6r*)" [see
Eq. (26), for example], and, consequently, lim,_ (6v%
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1 2 3 4 5

FIG. 4. ®7)/67?), versus time T for v=0.15, 0.4, and 5.0,
Curves are dotted for times when N has damped by more than
one order of magnitude.

~y™. This may be of little interest, however, because
|8 | ? has damped to a small value by this time and the
packet is linear, In Fig. 4 we show some typical curves
of (67% versus time, for various values of the damping.
Each curve is shown as a dashed line after the plasmon
number N has decreased by one order of magnitude.

In Fig. 5 the quantity B=x_,,/x(0) has been plotted
versus «a for various P values. These plots show that
collapse is stabilized for a> a,= §. Thus, we have
noncollapsing solutions for ¥>v,., where the critical
damping rate y_ is given by

v.={1-P1)/(3t). (49)

If the collapse proceeds too far before stabilization oc-
curs, the nonlinear Schrddinger equation breaks down
and results based on the virial theorem are not reli-
able. Initial wave packet conditions for which the non-
linear Schrédinger equation remains valid throughout
the nonlinear evolution are given in the Appendix,

X
min _ 8
X(0)
Pz «»«43 2 1.5
1.0 |
0.5 |
o 1 1
[o] 0.2
v
as=
1-p"
FIG. 5. B = x,, /x{0) plotted versus « for P=15, 2, 3, 5, and
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V. SELF-SIMILAR BEHAVIOR

A. Scaling Jaws
By making the self-similar substitution®:?
8=(t, ~)*/*R(u), u=(¢, -0 % (50)
in Eq. (3), we get rid of the time dependence
3i(l+u 8 )R+:87R+ |R|’R=0. (51)

At collapse threshold the nonlinear pressure term must
balance the dispersion term; hence, for the ratio of
field energy to threshold energy we get

IRI’R
193R
where Ay is the half-width of the function R(u). As-
suming that the first term in Eq. (51) is of the same
order of magnitude as the nonlinear term (which is ob-

viously true for P>>1), we find that R, =0(1). From
Eq. (50), it then follows that

t,=0(]8]). (53)

This always turns out to be a faster time than the pre-
dicted by virial theory (an example will be given).

P~

|~ (R 00, (52)

The self-similar solution in Eq. (50) has some pecu-
liar properties which might tend to obscure its relation
to arbitrary initial-value problems. For example, its
N invariant is infinite in three dimensions (although not
in two). To see this, we note first that Eq. {(50) implies

N=(t, -2 fd3u|lz(u) 2, (54)

However, in the limit of large «, the last two terms in
Eq. (51) are negligible, and R=u™, Hence, the integral
in (54) diverges. Indeed, this must be the case, in or-
der for N to be time independent. However, in any in-
itial-value problem of physical interest, N is always
finite. What role can self-similar solutions play in ar-
bitrary initial-value problems? This question is ad-
dressed next,

8. Numerical studies of three-dimensional collapse

We support our discussion with numerical solutions
of a scalar nonlinear Schr8dinger equation in spherical
symmetry

o 1 @ oy _
oy () V=0, (55)

with boundary conditions

8
(;rlﬁ)no— w'-..— 0.

This equation follows from the vectorial nonlinear
Schrddinger equation (3) under certain conditions. As-
sume that the electric field envelope E has a rapidly
oscillating spatial phase factor exp(ik, r), where &, is
much larger than the k-space width ak of the spatial
envelope. Under this asgumption the electric field can
be represented in terms of a scalar function ¢(r’,):

E(r', N =V[olr’, )/ k] = io(r’, Dk, (56)
This immediately gives a scalar nonlinrear Schrddinger

equation in ¢, but it is not spherically symmetric be-
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cause ¢(r’,t) still contains the nonsymmetric phase

factor. This means that the wave packet has a nonzero
momentum, P’=N‘k, However, the momentum can be
removed by the following gauge-frame transformation:

o(r', t)=Y(r, ) exp(—ik2t/2+ ik, 1'), (57)
r=r' -k, (58)

under which the nonlinear Schrdinger equation and the
constants of motion N and A [see Eq. (18b)] are invari-
ant, The momentum transforms as

P=P'-N'k,=0,

s0 that y(r, ) does not contain the phase factor
exp(ik, r), and it is possible to impose spherical sym-
metry to obtain Eq. (55).

Equation (55) was solved by Budneva ef ql. for an in-
itial Gaussian shape corresponding to P=8.5 (threshold
is P=%). We solve it for several P values, both below
and above threshold, and the results can be summed up
as follows: For all P>% a collapsing “core” develops
whose collapse time is less than one-half of the col-
lapse time derived from the virial theorem under the
Gaussian approximation.

However, the collapse threshold condition, P=$%, ob-
tained from the virial theorem with the Gaussian clo~
sure approximation provides a surprisingly good cri~
terion for core collapse. When P< %, the corona dis-
perses ({67%) grows monotonically), in agreement with
virial theorem predictions. Just below threshold, how-
ever, we have the situation of a collapsing core co-ex-
isting with a dispersing corona, indicating that core and
corona can behave independently of each other.

2
¥
12
10 F
-
8 klt=12
6
4
2
o ) S | — r
(o] 2 4 6 8
FIG, 6. Initial Gaussian {{= 0), and nearly collapsed solution
with a core of similarity form (/-1.2). Dotted curve is the so-
lution at 7 - 1.2 in the Gaussian approximation,
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In Fig. 6 we illustrate a solution to Eq. (55) (the factor
4 in the dispersion term has been scaled away, by
stretching r by a factor V2, in order to correspond to
the equation of Budneva et al.). Figure 6 shows the
build-up of the core for P= g- (two times threshold).
The intensity is displayed at time £=1.2. The dotted
curve shows the corresponding shape if the packet has
remained of Gaussian shape and collapsed in accordance
with virial theorem arguments. The steepness of the
core is of much less consequence when we recall that
moments and invariants are weighted by »*> when three-
dimensional integrations are performed.

For example, at early times, the virial theorem pre-
diction of width {8r%) is well satisfied. If we assume
that

|1 = (8rB/(8r%, | <1,

then the virial result, Eq. (31), may be integrated ana-
lytically to yield

(8r*)= (or*)(1 -at’), a=( P-1)8Y/18P%). (59)

This curve is plotted in Fig. 7 for P= % (§7=2.39).
Superimposed on it are the results for (6»% obtained by
spatial integration of the numerical solutions to (55), at
various times, By the time ¢=1.2 (corresponding to
Fig. 6), the non-Gaussian character of the core is
causing the numerically determined (5r%) values to fall
about 1% below the virial theorem predictions. This

(8r2)/(8:2),

1,

98 }

96 |

94 |

92 |
!

90

88 N L ¢
0o 2 4 6 8 10 12 14

FIG. 7. S9pherically symmetric numerical determination of
®r® (x marks) as a function of time, versus virial theorem
prediction [solid curve—gee Eq. (59)1, for the case P= f;
119 =1.3265

e . .
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happens because Eq. (59) was obtained by assuming @
is constant and equal to the value given in Eq. (30b).
In the actual numerical solution, @ has increased by a
factor of 2 by the time ¢t=1.2, and it is this non-Gaus-
sianity which is causing the slight lowering of the (6>
points.

The virial theorem prediction for the collapse time
[Eq. (37)] gives ¢t=3.2. However, the collapse of the
core is seen to occur at £=1.33, by arguments we shall
advance shortly. At this time (6% is nonzero and
comes from a tail which remains even when the core
has gone singular. This time is indicated on Fig. 7 as
. The significance of the virial theorem predictions
of (6r°) beyond t!*’ are not clear. The nature of the
problem will be summarized later.

In Fig. 8 we verify that the field is self-similar at »
=0, and determine the collapse time by extrapolation,
According to the scalar-field version of Eq. (50), if the
field is self-similar at the origin, then y(0, ¢)
= R(0)(t, - #)"'/% Hence, in Fig. 8, we have plotted
|4(0, 1) |2 versus time and have found the expected
straight line, with |$(0,#.)|™=0 at £{*' =1.3265,

Of more interest is the question of the spatial extent
of the self-similarity. Consider the field at two times
¢, and ¢,, such that ¢, <¢,<t'*. If the field is self-simi-
lat at ¢,, with respect to the later time ¢,, then it must
have the form y,,(r, t,) which is related to y(r,¢,) by

baol7s 1)) = anw(r/azu t;),

ay = ( 2::—:;:)‘“. (60)
1 3

o2 "'

14

12

10

8

6

4

2

° ! ' ' - I
1.300 1.310 1320 t. 1330

FIG. 8. [4(0,n]"? versus time, showing self-similar approach
to singularity in [§(0,0)|? at =0, and £.*’ = 1.3265.
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FIG. 9. [#%/1¢4% =1 as a function of »at ¢=1.2, 1.3, and 1.31.
This exhibits the relative precentage difference between |#|?
and |#,/%. The latter is reconstituted from |§(¢=1.3220)|2,
under the assumption of self-similarity.

J

In Fig. 9 we have plotted the quantities

1%/ 19, |*-1,

for ¢,=1.3220 and three different values of the earlier
time ¢,. This represents the percent difference between
|¢|* and the self-similar solution, as a function of radi-
us, for the three earlier times. At times later than
1.30, |¢|?is self-similar to within 15% up to radii of
about r=3.7. At these times the half -width of the peak
occurs at r< 0.5, so a relatively long self-similar tail
is observed.

How much of a contribution to the “number invari-
ant,” N, is made by the self-similar part of the solu-
tion? To answer this question in Fig. 10 we have
plotted the volume integral of [¢|® up to radius », as a
function of r,

N,(t)=4n f dr v? |ulr, 1) |?, (61)
[}

at the initial time and at two later times. Note, N_ is
the plasmon number invariant, N, here equal to about
14. The arrows on the curves at {=1.2 and at 1.31 in-
dicate the radius at which |¢|? deviates from self-sim-
ilarity by 125%. We note that about half of N comes
from the self-similar portion of the solution. The dots
indicate the radius at which the half-maximum in |y |?
occurs for each time. Most of the contribution of the
self-similar portion of |¢|*to N comes from the tail
rather than the peak. As the collapse proceeds, the
self-similar peak makes a vanishingly small contribu-
tion to N, while the self-similar tail makes an increas-
ing contribution,
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FIG, 10. N,=4r [,"dr 7*|§|? a5 2 function of » for 1=0, 1.2,
and 1,31. The radii at which |3|? is equal to its half-maximum
are shown on each curve as a dot. The cutoff points for devia-
tion from self-similarity by more than 25% are shown by ar-
rows.

The important issue of what happens to the entire tail
(and to (6v%)), after the three-dimensional collapse of
the central peak at time #{*’, cannot be resolved within
the context of the present theory. A proper resolution
should take into account the inevitable break-down of
the Schrédinger equation and the need for more physical
processes. Inthe Langmuir wave application, this
means the inclusion of a dynamic ion response and,
possibly, energy transfer to electrons. The criteria
for neglect of these physical effects are described in
the Appendix.

We note that the non-Gaussian character of collapse
appears to be a three-dimensional phenomenon. In two
dimensions, even the self-similar solutions appear
more Gaussian, and are not associated with an infinite
N invariant, Qur results on pulsating solitons in one
dimension and on the effects of dissipation in two-di-
mensional collapse should not be affected by the non-
Gaussian character of three-dimensional collapse.
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APPENDIX

Here, we briefly review the plasma physics condi-
tions which must be satisfied for the validity of the
cubic Schridinger equation (3). We begin with a more
general set of equations, the Zakharov equations, which
have been used extensively' to describe nonlinear
Langmuir and electromagnetic wave evolution

i8+iVV- 8 —(C/2)VXVXE -~nE=0, (A1)
(€207 ~V3)bn= V2|6 |2. (a2)

The units are the same as described after Eq. (3); in
addition, 6» is the low frequency electron (or ion) den-
sity response, in units of 2n,, where n, is the average
background density. The parameters C and C, are,
respectively, the speed of light and the ion-acoustic
sound speed, in units of V3y,, where y, is the electron
thermal speed (8,/m,)!/%. There are five conditions for
the validity of the Zakharov equations (Al) and (A2):

(i) (k/k) 181 «<1 (dipole approximation);

(i) wg « w, (slow-fast time separation);

(iii) neglect of wave-particle interactions (k/k, <1,
94 > 8 l) ’

(iv) quasi-neutrality;

{v) linear ion response to ponderomotive force (on
< ny).

We shall be concerned mainly with the conditions for
two further approximations, which lead to the cubic
Schridinger equation, These are, respectively, the
electrostatic approximation (Vv x § =0) and the adiabatic
ion approximation |C;2878 | « |v38| in Eq. (A2).

We begin by assuming the electrostatic approxima-
tion, and then show that this approximation can be well
satisfied in the adiabatic limit, provided that the packet
also satisfies certain criteria in k space.

With Vx =0, it follows that vv-§ = V28, in Eq.
(A1). In the adiabatic limit, the first term on the left
side of (A2) is neglected in comparison with the second
term. For localized fields, (A2) then integrates to on
= =|&|?% and (A1) becomes the cubic Schrdinger equa-
tion. An a posteriori examination of the terms on the
left side of (A2) then gives us the necessary inequality
for the adiabatic limit

jc?e318)%) <) 9?8 )%). (A3)

From Eqs. (5) and (12), and the identity of current and
momentum densities for the Schr8dinger equations, we
find

8}[8|*=vv,T,. (A4)
The stress tensor is given by Eq. (14b). It may be re-

written in a useful form by expressing the field in terms
of an amplitude and phase:

8=Aexp(if), A, real. (A5)
Then
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T, =(V-ANV A, +u Au A,
~(6,,/2)[A*+ V- (AV-A) ], (A6)
where
u=ve (A7)

corresponds to the packet velocity [note, with the help
of (A5), the current density (6) may be rewritten as
S=u|&|?]). In order to reduce the inequality (A3) still
further, we consider a wave packet which is centered
about wave vector k, and has a k-space width ak:

A~ A exp(-r?8k?), u=k,. (AB)

From (A6) we see that the various terms in the stress
tensor are then of the orders

T=0[(ak)PA%] +O(RZA%) + O(AY) + O|(AR)%A%].  (A9)

Hence, (A3) and (A4) yield the following inequality for
the adiabatic limit

O [(ak)?] +0(k) +O(|A |2 < C2=r(m/M), (A10)

where 7= (1/3)(1+7,0,/6,) and v, is the usual ratio of
ion specific heats. The condition on the wavenumbers
means essentially that the packet velocities (or group
velocity, in the limit Ak <«<k,) must be much less than
sound speed, so that the ions can follow the packet
spatial translation. The condition on the amplitude,
|A |, means that the collapse speed of the packet must
also be much less than sound speed. Both conditions
are theoretically met, for example, in the case of the
type I solar radio emission.%!®

It is also useful to examine the adiabaticity criterion
(A3) for the case of self-similar solutions of form (40).
Once again, if (R),,, and (8,R),,, are considered to be
of order unity, the adiabaticity condition (A3) becomes
|8 |2, < C?, for nontranslating similarity solutions.

Next, we show that the condition for electrostatic ap-
proximation in the adiabatic limit is merely

Ak <k, (A11)

for the electrostatic approximation, Here, we imagine
an initiaily pure electrostatic packet (such as may
arise from a beam instability, for example®!®), cen-
tered around the wave vector k,. As the packet col-
lapses, its effective k-space width, Ak, increases. As
long as Ak remains much less than k;, the term C%v

X VX 8/2 on the left of Eq. (A1) may be ignored.

The demonstration consists of two parts. First we
require that the transverse part of § be much smaller
than the longitudinal part. This has been shown in Refs.
2 and 15, where |8,|/|8,| is shown to be of order C™
Given |8,| > |8,|, we may take the longitudinal and
transverse parts of (A1) and write them approximately
as

i8,+19%6, ~(5n8,),=0, (A12)
i8,+1C?V2 8, —(6n8,),=0. (A13)

Note that if we can demonstrate [6n6, [, < [6n&, |, it will
will then follow that the third term in (A12) can be
written approximately as (6n8,), + (6n8,), = 6n8,, and
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the resulting equation is equivalent to (Al), in the elec-
trostatic approximation The condition |16, |,

<« [6n8, ],
may be written as
V'x V' x

| Id“r' “?

(RS ol

i* (adiabatic approximation),

Ils IV 1641%8, v 18:1%8,
“Ir-r |

(A14)

Next, take E, to be of the form &, = A exp(~r*ak?)
x explik,* r), as in (A5) and (A8). Then, since
v'x &8,(r')=0, the left side is of order Ak/k,
smaller than the right side, when Ak <« k,. This demon-
strates that Ak <<k, is indeed the condition for the elec-
trostatic approximation, in the adiabatic limit., To-
gether with the inequality (A10), this defines the condi-
tions for converting the Zakharov equations (Al) and
(A2) into the cubic Schrodinger equation (3). However, we
note that these conditions are based on spatially Gaus-
sian packets. If collapse has proceeded sufficiently into
the self-similar regime, these estimates may have to
be modified.
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I. INTRODUCTION

It is now believed that a type II1 solar radio burst 1is
associated with an electron beam launched intc the golar wind
during a solar flare, leading to elcctromagnetic emission at
the fundamental and harmonics of the local plasma frequency.
Gurnett and Andersonl have measured the volume emigsivity of
harmonic emission at 1/2 A.U.

Recently, Goidman et al.2 proposed a model for the emission
based on the following scenario. An energetic beam of elec-
trons launched into the solar wind excites Langmulir Waves.
Computations3 indicate that a Langmuir wave packet grows up to
a point where the spatially averaged energy density W (normal-
ized to the thermal energy) in the packet exceeds the threshold,

4,5 The collapse time is infinite at

5
e

wth' for direct collapse.
threshold and decreases rapidly as W increases above wt It
is found that typically a packet continues to grow in

strength up to about twice the thresold energy density before

there is noticeable evidence of spatial collapse (and broaden-
ing in wave vector space). Once the packet becomes broad

enough in k-~space, it should be kincmatically possible to couple
two Langmuir waves into a photon at twice the local plasma
frequency.

The physics of Langmuir collapse is decribed by the Zakharov

equations.4 The general solution of these eguations is unknown.

However, it is known that they possess certain invariants.4’5’b

4,7,8

It is also known

that in some cases the solutions approach




a self~similar form over a region of space. There are two
distinct stages of early collapse, the subsonic or adiabatic
stage (described by a cubic Schrodinger equation), and the
supersonic stage. In the subsonic stage the ions respond to
the ponderomotive force adiabatically, while, in the supersonic
stage, ion inertia plays an .important role.

In Ref. 2, using the plasmon number invariant, an upper
bound, and using a supersonic self-similar solution, a much lower
estimate of the emissivity of a bunch of collapsing packets

was obtained. It was argued that most of the harmonic emission

would occur in the supersonic stage.

In the present work we examine the adiabatic stage

numerically. We find that an adiabatically collapsing wave
packet can lead to emission in the subsonic stage which is
significantly higher than was thought possible. Due to subtle F 4

stationary phase effects, this can occur for packets whose j

width Ak is still smaller than . /

b vbeam' With reasonable

choices for the number density of collapsing wave packets,
we find levels of emission consistent with the experimental

estimate1 for the volume emissivity.

II. EMISSIVITY OF A LANGMUIR WAVE PACKET

The emissivity is given by

) T/2 |

dP _ cr .1 . l

aw = o r}‘-l;: T f dt E°B , |
-T/2

where ¢ is the speed of light, E(B) is the electric (magnetic)




field, and r is the distance between the point of observation o

(where EXB is evaluated) and the origin. In terms of the

Yy

current, sz , at twice the (local) plasma freguency, ‘p?

the emissivity is,

——

o0

f- -
&= lim'% J dw
’ 4m1c® T 27

wk| T, (KE,w) |2 sin®s (1)
Pe2w T |

-0

2w
|

where r is the unit vector directed towards the point of

observation, w is the frequency variable in the temporal Fourier

transform of the current, X = [uz—mpz(r)]%/c, and € is the angle
between J, (Kr,») and r, i.e.,
2wy T

sing = |J
~2wp

(K?Iw) x?l -

We now make use of Zakharov's fundamental simplification4 by
expressing the current as a slowly varying envelope gzw and a
rapidly oscillating phase:

-iw_t

s = . o}
QZwQKf’mo) 5 22wp e + c.c. ,

where We is the photon frequency. The emissivity can then be

2
expressed as \

.2 T/2
K w_sin 6
d ; ; -
ap , So%SM Yo L. 1 f at|j, (x.r,t)|%, (2)
dq 2 T Y2 o~
8nc T-ro _T/2 P

where Eq. (1) has been simplified by taking an "average" angle
eo, wavenumber Ko’ and frequency Wg out of the integral, where

2

= 2 5
K, = luw, Wy (r)]*/c . (3)

(o]




-

This procedure should be valid as long as the direction of
(Kf,w) does not vary significantly over values of the

g2w

P . .
integrand in Eg. (1) for which 192m {2 is large.
})

III. DYNAMICS OF A LANGMUIR WAVE PACKET

We describe the nonlinear wave packet by a Schrodinger

equation with cubic nonlinearityzz

37 2
id, +n—2 02— pdle=0,
t 2m_w 8m w T '
e p ep

Y Tg * Y T;i T (T,) is the electron (ion)

1}

where V' = 3/0r';
temperature, with Ye(yi) being the associated adiabaticity

index; m , e are the mass and charge of the electron, respec-~

tively; E is the envelope of the electric field E:
-iw t

g(g',t) =k E(E',t) e P 4 c.c.

Under the following substitutions,

E > (32m D),
t > w t ,
o (4)

Ev_,,/§ )‘DE' ,

where ng, is the background number dcnsity and XD = ('I‘e/llﬂneez);i

is the Debye length, the dimensionless form of Schrddinger's

equation is obtained:




12)E =0 . (5)

~

(13, + %V'z + |E

We note that the use of the Schrodinger eguation is valid only

4,5 In the

in the subsonic stage where the ions are adiabatic.
Appendix this is justified for the time scale over which we
calculate the emissivity.

The electrostatic field envelope, E, can be written as

ik, x |
E(r,t) = -V[iv(r,t)e kT (6) j

Here, ko = wp\:rb/vb is the wave vector of the most unstable

]

beam mode. At t o, w(;,t=0) is a real function which is

localized around r = 0 and has spatial widths parallel and per-

RN

pendicular to ko. These initial widths are set by the k-space

contours of the beam instability.2 Roughly, IVilwl: Ak |yl

H
and [Vlwl x Akjwl where Ak” and Akl are the parallel and
perpendicular widths associated™ with the beam instabiiity.
Initially, AkH LL<< ko.
Our central approximation will be to take y to be spheri-
cally symmetric at the initial and later times, so there will only
be a symmetric width measure which changes with time. Throughout
the calculation the inequality |{Vy| << ko]wl will be satisfieqd, ,
so the wave packet will remain relatively narrow in k-space.
This enables us to write Egq. (6) approximately as
ik _-r!'

E(r',t) ~ k_y(r',t)e ° . (6)

This field still has the phase factor, exp(iko-r'), and 1is

thus not spherically symmetric. However, the momentum ko can




be transformed away by the followingy gauge-frame transformation7

2

Y(r',t) = ¢(r,t)exp(-ik _“t/2) ,
r=z -kt o )

Using Egs. (5)-(7) we find that the spherically symmetric

scalar, ¢(r,t) satisfies,

2

+ kV

(id, + ol e =0 . (8)

We have studied this equation in Ret. 7. It was shown there

that the condition for the electrostatic approximation is
Vel << [k vl

which is well satisfied for most times of interest. This differs
substantially from the so-called head-on approximation often
made8 to calculate harmonic emission. In addition, conditions
were found for the adiabatic approximation. These can be

expressed as

‘¢|2 ’ koz << m/M.

In the Appendix we shall consider the validity of these
inequalities for the parameters of the present calculation.

In terms of ¢, the current density jzm can be written as

[see Eq. (33) of Ref. 2]:




-3/8w ) %7 (r o ) , 4‘
32wp(K°E't) Te Ko \2 7 £'KoKo/exp =ik K 1)

3,2 o n .
fd ro~ (r) exp[-l(Kog-Zlgo) r] .

The angular part of the integral can be easily evaluated,

leading to
2
A~ 2 ‘/ﬁ 6'5“.)))\132 x 2 2
135y (Kor,t)|% = £ = Jm sin(Sr)dr ,
P e(19-8,3u)" 0
where

v
_ oo _ th WA
s = IKOE 21501 = /3 o (19-8/3u) 7,

o]

=
1"

LA

R

The quantity S is the momentum mismatch between the harmonic

photon and two plasmons. Also, Vih is the electron thermal

speed. Use has been made of the fact that for emission at twice

the local plasma frequency, Eg. (3) gives K, = /3(wp/c);

(9)

(10)

moreover Igol = 2(wp/c). [Note that in Eg. (10) the dimension-

less forms of Ko and ko appear in accord with Egq. (4).]

Substituting Eq. (9) for the modulus-square of the 2up-

current into Eq. (2), we have the following expression for the

emissivity c¢f a single wave packet:

dE =r sinze

=12 2
/g ( 6T ) Koll)o \_,_t_h l ) m _l_
Vth 1

ae <~ © 1 (19-8/3u)e’ \ € Tro T
T/2 - 2
f at! fdr re? sin(st)| .
-T/2 0 ‘

(11)




IV. NUMERICS AND SCALING

Equation (8) is solved in the Hilbert space of ¢ by an

implicit finite difference method in spherical geometry. The

following invariants can easily be derived from this equation '7: )
5 =f l61%c%ar |

0 |

B} 2 _ .4 E

I, —f (13 0] o] ®rar (12) !

0 ]

where Il is proportional to the boson number and 12 is propor-
tional to the Hamiltonian. The accuracy and stability of the 2
numerical scheme is checked by the (semi-) invariance of the

discrete forms of the functionals Il and 12 on the Hilbert

space.
1

The computations are started by choosing a Gaussian for B

the initial potential: 1
=0) = 2,,2
¢ (r,t=0) = ¢oexp(-2r /47) . (13)

For the particular mesh size chosen, we take 2 = 5.66. From |
Eq. (9b) of Ref. 2, and the parallel half-width of the packet

is found to be

By

, 1
: ’
. ko 4 vb




[Eq. (9b), Ref. 2], where Vp is the beam speed and Avb the

spread in this speed. From the values quoted in Ref. 2 we

find

Note that the Schrodinger equation (53 is invariant under a
stretching of r' by a factor A, provided the time, t, is
stretched by Az, and E is reduced by A. With A = 300, our
choice of 2 = 5.66 can be made to correspond to the above value
of Ak'r We therefore arrive at the following approximate

scaling from type III values (subscript "III") to computational

values (subscript "c"):

_ -1
(0) 77y = 300071 (@),
(t) = (300)2(t) (14)
IIT c '
(r)III = 300(r)c .

We choose (¢o)c to be 1.18, corresponding to an average energy

2,7

density, (W)c, at twice the threshold value. Using the

scaling of Eq. (14) this leads to a value for (W) 1q © 1074,
which is in agreement with the value used in Ref. 2. Further,

from Egs. (4), (10), and (14) we find that

Vth X
(8), = 300(8)  ; = 300/3 = (19-8/33) ¢ . (15)

. i
idors S i SOV




l 11

% I With (v ,/c) = 4.5x10"> in Eq. (15), S is sufficiently large |

o

for all ¢ that the spatial integral in Eg. (11) is seen to
be practically zero for an initial ¢ of the form of

Eq. (13). Thus, the scaling implied by Akll[Eq. {9b) of

i
|
|
l Ref. 2] leads to a negligible emissivity initially. The inter- !
esting feature that emerges from our computations is that the r'

modulus and phase of ¢ change sufficiently in the subsonic

i

l

regime to enable substantial emission to occur. i
{

i

V. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) show the time development of the
emissivity of a single packet, i.e., the expression given in
Eq. (11) before performing a time-average. The emission grows
in an approximately exponential manner for most of the time i}
development of the packet, reaching a maximum and decreasing
thereafter until the collapse point. In this calculation Qo has
been taken as 45° [see the remark following Eq. (2)] and
o= @o°§ has been taken as v3/2 (ﬁo making an angle of 30° with
r).

We note the emissivity climbs from an initially negligible
value to a peak many orders of magnitude larger, and then
begins to decay. The peak occurs at 0.994 tc, where tc is the 1o
adiabatic collapse time. To understand this behavior, we note

that dP/dQ in Eqg. (11) is proportional to the absolute square

of the following integral over ¢2:

I E[ dr r ¢2 sin Sr . (16) l
0
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Let us now write ¢ = A eld, whore A(r) is a real modulus,
and a (r) a real phase, and both are spherically symmetric. The

integrand will be largest around the peak of rAZ, provided the

phase factors e1(2atSr) do nct produce severe phase mixing.

For our initial ¢ of Gaussian form, u 1s zero and the

—2r2/22
e peaks at r, = 2, and has a width of

quantity rA2 « r A

ArA ~ 2. However, sin Sr oscillates with a half wavelength

T/S

&

0.5. Hence, there is strong phase-mixing of the emissivity.
This corresponds physically to the failure to conserve momentum
in the coalescence of two plasmons to produce a photon.

At later times, the packet has collapsed considerably, so
that rA2 can peak at smaller r-values with a smaller half-width,
which is therefore less susceptible to phase mixing. 1In
Figure 2(a), we have plotted A2 as a function of r at t = 0
and at t = 1.312. The half-width ot A% has decreased by a
factor of 6. 1In addition, the guantity rA2 now peaks at Ly
= 0.25 with a half-width ArA ~ 0.25. This peak and half-width
coincide with the peak and half-width of the first maximum of
sin rS, which would seem to indicate reduced phase mixing.
However, effects associated with the phase u of the field are
also beginning to come into play at this time. A region of
stationary phase in the integrand of Eq. (16) corresponds to a
range of points where |S%(3a/3r)| becomes significantly smaller
than S. Such a region of stationary phase is beginning to
occur at t = 1.312, and is seen to overlap the peak of rA2.

This also contributes to the rcduction of phase mixing. Thoe

normalized gradient of ~a, (5u/3r)/S is plotted as a function

Bhaded, deo i
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of r in Fig. 2(b) for the time t = 1.312, and is seen to reach

a maximum absolute value of about 1/2. %
The phase, a, is also responsible for the eventual reduction
of emissivity at later times. In Fig. 3, we have plotted

(3a/3r) /S as a function of r at the later time t = 1.324, q

Y

corresponding to a reduced emissivity [see Fig. 1(b)]). The d
g emissivity is reduced at this time because of the positive and

negative oscillations in the gradient of ~ which once more lead

to phase mixing. The reduction can also be viewed as a cancel- ;

lation of the integrals over e1(2a+Sr) and e+1(2u-Sr)’ which

have slightly different narrow regions of stationary phase.
A word is in order concerning the physical significance of

the phase a. The momentum density carried by the Langmuir field

* *
is7 p = (l/2i)(EiYEi - E.VEi). In our case, this reduces to,

1~

p= [k, + Ya(r)]lglz .

Hence, Vo is a local plasmon momentum, which arises from the

nonlinear dynamics of collapse, and adds to *o = mpgb/vb. (We
should bear in mind, however, that average plasmon momentum is
conserved7 and equal to 50 in the adiabatic stage of collapse

so <Va> = [ d3r|£!2Ya/f d3rl£|2 = 0.) The momentum conservation

in the coalescence of two plasmons to produce a photon thus '

becomes 2ko-Ko—2Va z 0, which is essentially the stationary

A A

phase condition in the integral in Eg. (16). As the square

modulus A2 narrows spatially, the tailure of this phase matching
condition is less serious. The gradient of A is |[VA/A|, which

we may identify as a spread of wavenumbers, Ak. Its maximum
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value of Ak = (ArA)_1 becomes broader as real space collapse

progresses (as Ar, tends to zero). At t = 0, we find Ak/kO

A
¥ 10%, whereas at time t = 1.31l6, Ak/kO * 60%. Thus, stationary
phase becomes less important as collapse proceeds. The excep-

tion is the late stages, in which the phase oscillates rapidly,

causing the resumption of phase mixing.

It is important to note the role of coherent phase in this

calculation. Past estimate58 of the emissivity rely on the
random phase approximation and assumptions about the relative-
size of the average plasmon momentum, ko’ and the photon momentum,
50. For example, in the head-on approximation,8 the plasmon f
momen tum ko.isassumed to be >>Ko. No such assumptions are made

here, and in fact the plasma wave momentum is not > K. The

coherence of each collapsing packet is taken into account,

although the contributions from different packets are incoherent

with respect to each other. Statistical assumptions underly

only our treatment of the density of collapsing packets, which

vyields the volume emissivity.
In order to compute the volume emissivity we need to know |

the density of collapsing packets n, in the beam. We just quote

the estimate made in Ref. 2: k
= 4
n, YchFno ’

[Eg. (59), Ref. 2], where yg is the beam growth rate, e is the

collapse time, n, is the density of wave packets, given by

2
= Ak (bk ’
n ”‘ _I.) /8
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[Eq. (56), Ref. 2] in terms of the parallel, AkKV and perpendic-

ular, Ak width of a single packet, and F is a dimensionless

1
unknown parameter in our model that essentially measures the
fraction of energy transferred from the beam to collapsing
packets.

To work out the time-averaging implied in Eq. (11) we
follow Ref. 2 and compute the fractional time the emissivity is

within a half-width of its peak value. From Fig. 1 this fraction

is roughly .025/1.325. Thus, we write,

ap z 0.025 0.16 = 0.003 ergs s_l ster_1 ’
ae/, . 1.325
time

and obtain for the time-average volume emissivity the following

result:

wa ne <dp/dQ> ,

Y i
- -9 2
8 TCFAkH(AkL) x 0.003 , 1

2
¥ n v
1 (n ) b ( b ) 9
= = [ = —_— = 1.3265 x 300 x F
8 \8e ne Avb =
AV 2 LY 2 '
X %——b . -UJ—p . (%) ("E) X 0-003 ’ L
M) Vb Vb |

where 1.3265><300/u>p is the numerically determined8 collapse

i time,

o ha”

2
B ()
8e ne Avb

following Eq. (62) of Ref. 2; n, is the background density,
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40 cm-3, ng is the beam density, 1078 nge vy and Av,_ are the

beam speed and spread in speed, with Avb/vb = 1/3,

Aki/ko = 1/4 ,
Eq. (9a), Ref. 2, and
Bk fk, = (1/4) (B /vp)

Eq. (9b), Ref. 2. The quantity F is a factor (described in
Ref. 2) which relates to the depletion of beam modes according
to two different evolution scenarios. The final answer for the

volume emissivity is therefore

-1

F ergs em™> s7) ster?

20

J = 1x10° (15)

2
“p

23 [see also

This is compared with the measured1 value of 2x10°
Eq. (1) of Ref. 2]. We see that in order to reconcile the two
values, F has to be around 10-3. Considering the arguments

presented in Ref. 2 concerning the magnitude of F, we see that a

value of 10_3 is not unreasonable.

VI. CONCLUSION

Our calculations for a group of collapsing Langmuir wave
packets account quite reasonably for the observed emissivity
associated with type III solar radio bursts. These results are
encouvraging enough to merit further elaboration; in particular,
there is a clear need for a better estimate of the density of

"collapsons."

i,
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APPENDIX: VALIDITY OF ADIABATIC AND ELECTROSTATIC

APPROXIMATIONS

our calculations have been based on the cubic Schrodinger
equation, (5). The validity of this equation requires that the
wave field be predominately electrostatic, and the low frequency
(ion) motions be adiabatic. The conditions for both approxima-
tions are set forth in the Appendix of Ref. 7.

For the waves to be electrostatic, we must satisfy
./.\k/kO <<'1 ,

where Ak x 'V{¢V¢| is a measure of the gradient of ¢. Our
wave packets satisfy this criterion up until the very latest
times of t = 1.324, where Ak/kO ~ 60%.

The adiabatic ion approximation requires that

k2, (g% < m/m = 5.4x107% |

The condition on ko means that the mean wave packet group
velocity is slow enough for the ions to follow the ambipolar
field adiabatically. Since k_ = 1072 in our calculations, it
is always satisfied. The second condition essentially requires
that the collapse speed remain subsonic. Taking into account

the scaling of ¢ in Eqg. (l14), we may rewrite this condition as

|2 << 50 .

|0

This condition breaks down at r = 0 near the time of peak

emissivity at t = 1.312. However, only the peak of r]¢c}2 is

i
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significant for the emissivity in Eg. (16). At this peak, we
find from Fig. 2 that ]¢c12 is of order 50, so the adiabatic

approximation is marginal. At later times, it would appear to
be violated. However, we have found the emissivity to go down

at these times [see Fig. 1(b)], so our calculation probably

does not overestimate the emissivity.
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FIGURE CAPTIONS

FIG. 1. Temporal development of emissivity from a collapsing
wave packet. Note the logarithmic scale in (a) for the early
stage, and the linear scale in (b), close to the collapse time.
The scale on the time axis ;s in wp—l and the computational

scaling [see Egs. (14) in text]. Collapse time is 1.3265.

FIG. 2. (a) Square modulus of Langmuir field, [¢!2 as a function

|
s
1
|
of rat t =0 and at t = 1.32. Note the Gaussian at t = 0 appears N
3
flat because of limited range of r plotted. (b) Gradient of p
intrinsic phase of Langmuir envelope in units of momentum mismatch 52
S, as a function of r, for t = 1.312, !3
FIG. 3. Gradient of intrinsic phase of Langmuir envelope in units
of momentum mismatch S, as a function of r for t = 1.324.
|
t
'
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ABSTRACT

With magnetic fields that are not too weak, Langmuir
collapse times can be prolonged and the packet geometry

significantly distorted.
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Within the last few years, there have been great theoretical
strides in the understanding of "self-focusing" mechanisms for
the nonlinear saturation of certain Langmuir wave instabilities.
In particular, it has been shown4 for a class of weak "bump-on-
tail" instabilities that direct spatial collapse can occur, due
to the self-ponderomotive force of intense Langmuir wave packets.
This may have important implications for Type III1 solar radio

4,5

bursts, for the radar-modifiecd ionosphere,6 and for laboratory

and space beam-plasma systems. Undriven Langmuir collapse cannot
occur in fewer than two dimensions, so numerical simulation study
is difficult. The relevance of one-dimensional simulations has
not been established.

In physical problems a weak background magnetic field is
often present, pointing parallel to the propagation direction of
the driven Langmuir wave packet. Linear stability analyses have

recently been performed7'8

for monochromatic Langmuir waves in
the presence of a weak magnetic field.

There has been little or no work on the effects of a magnetic
field on collapse outside the Soviet Union. One theory6 claims
to have found stable pancake-shaped Langmuir solitons pumped by
radio waves in the ionosphere, in the presence of the geomagnetic

field. Other studies®’?/10

have shown Langmuir collapse in
magnetic fields, but only for special symmetries and in parameter
regimes apparently unrelated to experiment. Our work differs from

these in terms of parameter regime, geometry, phenomena observed,

and physical explanation.

1-

5

-




First, we shall demonstrate numerically that weak magnetic

fields can significantly prolong the time for collapse of a broad-

sk

band Langmuir wave packet, and alter its geometry into a more

dipolar form, but cannot render it one-dimensional. Second, we

- —————

prove analytically a magnetic virial theorem which gives sufficient
conditions for collapse, and helps explain its retardation. Third,
we demonstrate that measured mean solar magnetic fields do not
affect the Langmuir collapse associated with Type III bursts at

0.5 A.U. Fluctuations in the magnetic field would have to be an

order of magnitude larger than the mean to have significant conse-

quences for collapse. ;

The Langmuir field envelope, E, obeys a generalized nonlinear

Schroedinger equation: ;"

(@]

1 2 g2 .
i9,E + 5 VV'E - 5 VxUxE - 5 P*E - (nE = 0 . (1) 4

Here, the units of time are wo-l, length is measured in units of

Y3 times the Debye length, IEI2 has the units of 647n®, where ¢ is '*
the common electron and ion temperature, and C2 E c2/3ve2 >> 1,
Qz = wge/wpz << 1. The magnetic dispersive term, (-QZ/Z)(Q-E),

arises from an expansion in the magnetic field. The operator

~

Pij = 6ij - Bibj projects out vector components perpendicular to !
the magnetic field direction, b. 1In the linear limit, Eq. (1)
gives the quasilongitudinal dispersion -elation for an oblique

Langmuir-wave envelope:

2 2 K
k Y .2 :
w = —2~ + = sin®g P (2a)
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Here, 9 is the angle between k and E. The condition for neglect '

of the transverse part of the field is

0% sin?e << c%k? (2b)

which we shall assume is well-satisfied. Physical driving terms,

such as growth due to a beam, have been omitted from Eq. (1) on

the grounds that the driving time scale is slower than the
nonlinear time scales.4

The density deviation, 'n, is in units of 2no, where ng is
the average background density. It obeys a hydrodynamic equation

driven by ponderomotive force: '

25,12

+ 0o, - vHyen = V2e? (3) B

-2, 2
(Cg "¢

Here Cs is the ion acoustic speed, in units of /5575;, and v« is
an operator representing the effect of Landau damping of ion
acoustic waves in an equal temperature plasma. We have also
briefly studied7 magnetic field contributions to equation (3),
but find no effect on the nonlinear evolution of a broadband
packet (only a small volume in k-space is affected).

Our numerical work assumes E = -V$, and generates solutions

- =

to Eq. (3), together with the divergence of Eg. (1), namely,

2
yog2, 1 o4 S _
10, V5645 V¥ - = VePeVO - V- (énVe) =0 . (4)

In k-space we take an initial packet of randomly phased

modes with a shape characteristic of a prior, slow bump-on-tail

instability.5 In real space this ajpears as an initial pattern




of wave packets oriented along the beam direction (see Fig. la).

The initial energy density of the packet is W = 16<IE12> = 5.6x10—4,

and it is centered about a k-space wavenumber of ko = 0.011 kD.
The parallel and perpendicular widths are Aki = 0.25 ko,
Ak = 0.17 ko. These are parametzars thought to be associated ;

with type III solar radio bursts. In the absence of a magnetic
4,5

field, W exceeds the threshold for adiabatic collapse,

~24[(AkJ_)2 + (Ak”)z], and the packets collapse, as shown in

Fig. 1b.

Next, with the same initial conditions, we introduce a
small magnetic field in the Eo—direction, such that & = 0.1.
This is sufficient to make the magnetic dispersion in Eq. (2)
exceed the thermal dispersion. The collapse is slowed down by a
factor 5, as shown in Figs. lc and 1d. The packets now tend
toward a pancake shape, but arc not one-dimensional.

Neither the slowdown nor the pancake shape is found when

2 = 0.01, which is an experimentalleoundll upper bound on

the mean solar magnetic field at 0.5 A.TJ.
We shall arque that the effect of the small magnetic field
when = 0.1 is to retard direct adiabatic collapse, allowing

7'12 tO ] ]

induced scattering of Langmuir waves off (dynamic) ions
occur. For our parameters, the scattered waves are in the forward

direction,13 with wavenumber on the order of ko/3. The evidence

i for this is shown in the k-space picture in
Fig. 1f for the Q@ = 0.1 case, compared to Fig. le in the non- [

b magnetic case, § = 0. The geometry anrd time~scale for the




configuration shown in Fig. 1f are similar to what we obtain for

a monochromatic initial packet, with B set equal to zero (not

shown here). For amonochromatic initial packet, direct collapse
cannot occur, because there is no ponderomotive force, and the
linear induced scatter instability dominates at early times.
This enables a fairly positive indentification of Fig. 1f as ,

resulting from induced scatter off i1ons. Such scatter is

principally in the B-direction. A more one-dimensional
configuration in k-space results, followed by collapse.

In Fig. 2 we plot, as a function of , the time for the peak
energy density in a collapsing packet to increase by a factor of
ten. Significant slowing requires ! > 0.1.

We now offer a theoretical explanation for why the direct
collapse is slowed down by almost an order of magnitude when

2 = 0.1, The results shown in Fig. 1 all occur in the regim of

adiabatic ions, where Eq. (3) reduces to,
sn = -|g|? . (5)

We now derive a virial theorem for Egs. (4) and (5) (with

E = -T¢). Such theorems are based on continuity and conservation

= !
ﬁ
laws for Eq. (4). To generate these laws we first require the
Lagrangian density, :
S G s 020k 1,202 _ 92 o, . 1 4 ;
—_2' (¢ ¢ - ¢ ¢ ) - 5 l G ! - 7 (2‘4"2'V¢ ) + 5 'V@l . .
(6)
3

e g —— - UV .
prane : o \

T, i




This Lagrangian density depends on $, Vo, V2¢, and their complex

conjugates. The dependence on V2¢ requires a generalization of

15

Lagrange's eguation. Hence, the cguation of motion [Eg. (4)]

is obtained from 3tL- + Ver :(32/3x12)[DL/3(329*/3X12)]} = 0,

b* vex
where a subscript of L indicates differentiation with respect to
that variable.

15,16

From the Lagrangian density we derive a momentum equation

atE + VeT =0 , (7)
* *
where the momentum density is p = (£, °V E, - E -V E })/2i, with
EL = -Vé. The stress tensor for a Lagrangian with higher order
derivatives 1515’16:
Si.L « x x I
Tig =72 7 %55, ~{%i3775 3%, T 2
i id 2 (a7 ¢ /axi )

+ complex conjugate,
A subscript i on ¢ or ¢* indicates a derivative with
respect to X0 and there is no sum over 1i.
The total momentum, P :.f dr p is conserved for fields which
fall to zero fast enough at 1..tinity in the (unbounded) plasma.

Another conserved quantity is

l2

- |E {4] + H_ , (8a)

1 i
wzs far 1|v-E

|
|




where

2
. Q 2
= . 8b
Hy =5 f'dr IEL Pl° . (8b)

In Eq. (8a) both the magnetic and thermal dispersion terms work

. . ' 4
in opposition to the nonlinear refraction, :EL' .

The final equation needed to gcnerate a virial theorem is
obtained from Eq. (1) rather than Eq. (4). For an initially
longitudinal wave packet, the transverse part of the field, ET'

will remain small as long as inequality (2b) is satisfied, and as

= O([EII/Cz) << ieL . We take

*

L
conjugate to obtain the approximate result,

long as Ak << ko. Then {ETI

the scalar product of Eq. (1) with E_. and subtract the complex

2
L+ ¥p=o0. (9)

From Egs. (7) and (9) we derive a virial theorem4 for the mean

. c 2. - 2;, 2 - .
packet width, < r®> t.fdg ¢r lgL} /N, where N ]'dgsz‘z is
the conserved quantity which follows from (9). The virial
theorem involves the trace of the stress tensor.4 The result is:

H

2.2 B
3. °<6r%> =28 - 2 2+ (2-D)<]EL|2> , (10a)
2
.20 (B
A Y - \® . {10b)

Here D is the dimensionality of coordinate space. Hence, we
derive a sufficient condition for adiabatic collapse: A < 0 for

D > 2.

el e e




For a stationary two~dimensional Gaussian wave packet,

E, Ak”2x2 Ak_l_zy2
E, =1 E—) V exp 1kox - 5 - 5 ’
o
and P
X Aklf sk 2wk 2
A =3 . 5~ + ;—%— + - > 54 . (11)
D D o

For the case Q = 0.1, Eq. (11) yields A = 3x10~%. at t = o,

HB/N is the same order of magnitude as A, so the initial value

of the right side of (10a) is A-H /N = -2x10"°. Numerical ¥

integrations during our @ = 0.1 run for times prior to the pile- i
!

up of mode energyiﬂ:ko/3 (Fig. 1f) show that Hy decreases by -i

about a factor of 2. This is ample to inhibit collapse by
changing the sign of A-HB/N. In the next stage, momentum is lost
to ions, and Eg. (5) is violated, so our virial theorem does not
apply, and A is not invariant. By the time exhibited in Fig. 1f,
there is very little magnetic dispcersion, and the thermal %
dispersion is also reduced. The new value of A—HB/N is negative,
and adiabatic collapse begins.
Our results for Langmuir collapse in a weak magnetic field

could be significant for ionospheric modification (where . = 0.25)

-~

and for the effect of intense solar magnetic field fluctuations
on type III emission. When collapse times are prolonged sufficiently,

they may exceed characteristic times for driving. This, in turn,

could lead to higher levels of strong plasma turbulence and more




dramatic physical effects, such as electromagnetic emission. The

altered packet shapes would also be expected to affect the pattern

of electromagnetic emission and its polarization characteristics.
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Figure Captions

1. In Figs. a, b, ¢, and d we plot contours of equal
Langmuir field modulus in real space. The spacing in the
64x64 grid is four times finer in x than in y. Contours 1,

4 3 and 6.5x107 5.

2, and 3 correspond to W = 7.3x10 °, 2.9x10
Figure la is at t = 0. Figure 1lb is at t = 0.76x105 with
B = 0. PFigures 1lc and 1d represent the evolution from la

(at times t = 3.6x105 and 4.1x105) for the case w_ /

ce wpe = 0.1.

Figures le and 1f show field contours in k-space, for the
nonmagnetic case (le) and the magnetic case (1f) at times

corresponding to Figs. 1lb and 1d, respectively.

2. Time for central energy density in collapsing wave-

packet to reach ten temes initial value.




14

t
1 @anbtgy “
p q 0
X4 0 * o %oose:-*v o m
) ﬂ petl =
%\?@ b d
E . \ w, )
A ,,OA O C m
i Y M
o N

T 09




15

pet
5x10° |-
4x10°
3x10°
2x105
1x10°
1 | | |
0 0.05 0.015 0.1
Figure 2

“)C/w

pe

~ g -
e

madio STl

-

e —

PR WP

i i




i APPENDIX E

E. "Nonlinear Langmuir Waves in a Weak Magnetic Field" |
J. C. Weatherall
Ph.D. Thesis, University of Colorado, 1980 r




NONLINEAR LANGMUIR WAVES IN A WEAK MACGNETIC FIELD s
by
James Christopher Weatherall

B.S., California Institute of Technology, 1975

A thesis submitted to the Faculty of the Graduate
School of the University of Colorado in partial
fulfillment of the requirements for the degree of
Doctor of Philosophy

Department of Astro-Ge« vhysics

1980

T




This Thesis for the Doctor of Philosophy Degree by

James Christopher Weatherall

has been approved for the
Department of
Astro-Geophysics

by

Yk U P

Martin V. Goldman

George A. Dulk

pate  |1/4/7C




|

AD-A096 560 COLORADO UNIV AT BOULDER DEPT OF ASTRO=GEOPHYSICS F/6 4/1
PLASMA WAVE TURBULENCE AND PARTICLE HEATING CAUSED BY ELECTRON =~ETC(U)
JUAN 81 M V GOLOMAN AFosn-ao-uoa
UNCLASSIFIED CU=-1533143 AFOSR-TR=81-0148

2w
%m
- B




Weatherall, James Christopher (Ph.D., Astro-Geophysics)
Nonlinear Langmuir Waves in a Weak Magnetic Field

Thesis directed by Professor Martin V. Goldman

Large amplitude Langmuir waves are known to
experience a variety of nonlinear effects: they can
couple to other modes in the plasma to excite parametric
instabilities; they can also self-focus to form localized
regions of intense electrostatic fields. This thesis
studies the effect of a weak magnetic field on both of
these processes.

First, a set of coupled equations between the
envelope electric field and the plasma density are
derived with careful treatment of the magnetic field.
When the electron cyclotron frequency is less than the
plasma frequency, the dominant nonlinearities do not
involve the magnetic field. However, the magnetic field
does increase the dispersion of the Langmuir waves and
prevents density perturbations directly transverse to
the field.

Numerical calculations show that when the magnetic
dispersion exceeds the thermal dispersion of Langmuir
waves generated by parametric instability, the wave
vectors of these waves shift to smaller perpendicular
wavenumbers. This shift preserves the fregquency match-

ing in the wave interaction, and does not change the
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e s

growth rate. Instabilities directly across the magnetic
field and perpendicular to the pump wave, such as might
occur for the oscillating two-stream instability, are

suppressed by very small fields.

e s e L

When intense wavepackets of Langmuir waves can

experience direct collapse, the magnetic field causes

two interesting effects: the collapsing wavepackets

I e el

assume a pancake-shaped geometry; and the collapse takes
a longer time. These effects occur when the magnetic

dispérsion competes with the nonlinear self-focusing. A
virial theorem and a broadband perturbation theory help

to explain this behavior.

RV

We find that magnetic effects may have some

relevance in the theory of Type III solar radio bursts.

In computer simulations of Langmuir wave turbulence during
a Type III burst at one-half the distance between the sun \
and the earth, we observe some changes in the wave be-
havior when a realistic background magnetic field is
added. For a magnetic field several times larger than
the average measured field, there are significant effects
on the shape of wavepackets and on the turbulent wave

energy levels. As a consequence, the properties of the

radio emission, such as the amplitude, directivity, and

polarization, may be different than given by an

unmagnetized theory.
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CHAPTER I

INTRODUCTION

Waves of all types exhibit fascinating and varied
behavior at large amplitudes. Of particular interest to
solar and plasma physicists is the Lanomuir wave, which
is a charge density wave in a plasma. Theory shows that
at large amplitudes these waves can couple to other
plasma modes or can self-focus to form very intense
regions of electrostatic fields. These so-called turbu-
lent processes are central to the production of radio
emission from plasmas and to the stability of beams of
charged particles. Usually the theories assume iso-
tropic plasmas, despite the fact that in physical situa-
tions where such phenomena are of interest, a magnetic
field is often present. The main intent of this thesis
is to demonstrate that even a small magnetic field can
have dramatic effects on the nonlinear behavior of
Langmuir waves.

In nature, intense Langmuir waves are thought to
occur during Type III solar radio bursts. Spacecraft
experiments at one-half the distance from the sun to

the earth (Gurnett and Anderson, 1976 and 1977) and at




the earth's orbit (Lin, private communication, 1979)
have shown that in conjunction with the emission of
radio waves at the plasma frequency and at twice the

plasma frequency, regions of intense localized electro-

static fields occur. This is presumed to be Langmuir
turbulence generated by a high velocity electron stream
emitted from the sun at the onset of the burst, and the ]
radiation is due to the interaction of the Langmuir
waves with the plasma.
This subject is also relevant to other problems in
which plasma turbulence plays a role. For example, in
ionospheric modification, when Langmuir waves are gener-
ated by intense radar waves, a rather strong magnetic
field is present. Also, laboratory experiments (Benford,
private communic;tion, 1979) show that radiation emitted
when a particle beam passes through the plasma is
decreased when a small magnetic field is introduced.
This is evidence that the magnetic field does have
important effects on wave processes.
The principal application of this thesis will
concern the nonlinear behavior of Langmuir waves during '
Type III bursts. In addressing this problem, we solve
a general set of wave equations in two dimensions by
computer. The wave-wave processes we study include the

induced scatter off ions (Kaplan and Tsytovich, 1968),

modulational instability (Nishikawa, 1968: Papadopoulos,




Goldstein, and Smith, 1974; and Bardwell and Goldman,
1976), and plasma wave collapse (Zakharov, 1972; Goldman
and Nicholson, 1978). These interactions encompass both
weak and strong turbulent effects.

In order to appreciate the relationship of these

theoretical problems to real solar phenomena, we will

present a brief review of solar physics (Pasachoff, 1977) i

and solar radio astronomy (Xundu, 1965).

Solar Plasma Physics

The solar atmosphere consists of three regions.
The processes we will study involving Langmuir waves
occur in the solar corona. Below the corona is the
photosphere and the chromosphere. The photosphere is
the visible surface of the sun. Most of the radiation
from the sun escapes from a layer of gas onlv 200 km
thick at the base of the photosphere, which is 6.96x105
km (1 solar radius, RO) from the sun's center. The
chromosphere is a region between the photosphere and the
corona extending roughly 10,000 km (1.003 R,) above the
surface, and is studied at Ha wavelengths with narrow '
band filters. The characteristic temperature of the

chromosphere is about three times higher than the ef-

fective temperature of the photosphere, which is 5700

°k. This increase in temperature, as well as the heating




in the corona, is attributed to the digsipation of wave
energy. The transition from the chromosphere to the
corona is abrupt. The temperature rises from about

10% to 10% K, and the density falls by about a factor

of 100. The corona is optically thin, so most of the
observed radiation is due to photospheric light scattered
by electrons and dust. The corona which is not normally
visible because it is fainter than the daytime sky, can
be seen during a total solar eclipse, by special tele-
scopes (coronagraphs) in exceptionally clear skies, or

by spacecraft above the atmosphere. The average density
of the solar corona varies with height, but the tempera-
ture remains roughly constant. The corona is continuous-

ly expanding into interplanetary space. The so-called

solar wind sweeps by the earth at 215 Ro’ with a charac-

teristic velocity of 450 km s~ 1. All of our calculations

are in a reference frame at rest with respect to the
solar wind motion.

The physical parameters in the solar corona are
summarized in Table 1 (Allen, 1976; Newkirk, 1967; Dulk :
and McLean, 1978). The electron density, ng» is deter-
mined (Billings, 1966) from white light and radio noise

scattering data, and directly by spacecraft measurement.

The density varies by about a factor of two during the
solar cycle and coronal streamers are typically overdense

by factors of 2 at 2 Ro’ and 10 at 10 Ro and beyond.
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TABLE 1 ;4

CORONAL TEMPERATURE, DENSITY, AND MAGNETIC i

FIELD AT DIFFERENT HEIGHTS g

|

r/R T (10%K) n, (cm™3) B, (G) |

¥

1.1 1.0 2x108 10 3
1.2 1.2 8x10’ 3

1.5 1.7 2x10’ 1 5

2.0 1.8 3x10° 0.3 ’

3.0 1.7 5%10° 0.2 %

5.0 1.4 8x10% 0.06 N

10 1.1 1x104 0.01 |

20 0.8 2x10° 3x1073 !

100 0.2 30 1x1074 |

. .

215 0.2 5 3x10°




The temperature is determined (Billings, 1966) in a
variety of ways, including atomic ionization data,
spectral line profiles, decay times of radio bursts,
radar reflection, and in situ measurements by space-~
craft. The magnetic field strength is known (Dulk and
McLean, 1978) from in situ measurements between 0.5 and
5 A.U., which may be extrapolated to the surface until
about 2 Ro’ where closed magnetic structures begin to
occur. Other estimates involve extrapolation from photo-
spheric data, Zeeman splitting, and measurements of the
intensity, polarization, and motion of radio sources in
the corona.

Beyond these general characteristics of the solar
atmosphere, there are often active regions which exhibit
variable activity characterized by sunspots and fila-
ments. Sunspots are the result of verv intense magnetic
fields (thousands of gauss), and appear dark because they
are relatively cool (4500 K). Sunspots form in groups,
generally containing two major spots of opposite polar-
ity and many small spots. The filaments are cool gaseous
formations extending 20,000 to 500,000 km into the
corona. They are observed as bright arches or promin-
ences on the sun's limb. Prominences can be stable for
200 to 300 days when they occur away from sunspot groups,
but loop prominences following flares last for only a

few hours.

t
|
|
|
i




Flares are very violent events, sometimes releasing

31 ergs in energy over a period of only

as much as 10
twenty minutes. Flares occur in active regions with
very strong a2nd rapidly evolving magnetic fields, and
seem to involve the release of energy by the reconnection
of magnetic field lines. Flares are usually observed as
a brightening in Ha, but can sometimes be seen in white
light. They also produce intense ultraviolet and X-ray
radiation which affects long range communication on earth
by increasing the ionization of the ionosphere. Energe-
tic ‘particles which reach the earth about a day later
cause disturbances in the magnetosphere and produce
aurorae and other solar-terrestrial phenomena. Also,
during a flare the observed brightness temperatures at
radio wavelengths can increase a thousand times over
quiet levels.

Although only a small fraction of the flare eneray,

~1024

ergs, is released at meter wavelength radiation,
observation at radio wavelenagths provides much information
about the temperature and density structure of the corona.
Beyond their importance in understanding eruptive solar

phenomena, radio bursts are of general interest in the

understanding of nonlinear processes occurring in plasmas.




Solar Radio Bursts

The discovery of radio emission from the sun was
made in 1942 by Hey, and strong meter wavelength emission
from the sun was first associated with a large solar
flare by Appleton and Hey in 1946. These observations
marked the beginnings of solar radio astronomy (see
Kundu, 1965; Wild and Smerd, 1963; and Wild and Smerd,
1972, for reviews and extensive references).

The radio emission from the sun can be separated
into a number of components (Allen, 1976). First, there
is the thermal radio emission from the quiet sun. There
is also a slowly varying emission associated with sun-
spots. Finally, there are rapidly changing phenomena,
associated with sunspots and flares, which are classified
into the burst types I, II, III, IV, and V. These can be
observed as noise storms (Type I bursts), as complicated
outbursts containing.Type II, III, IV, and V bursts or
emission, or as isolated Type III and V bursts.

The Type I bursts are broadband enhancement of the
continuous solar radiation during which hundreds of short,
narrow band bursts occur every hour. Type I bursts can
last for days, and are present 10% of the time at solar
maximum. They occur in active regions near sunspots, and
are sometimes, but not always, initiated by a solar flare.

Type II bursts are more rare, occurring about every

50 hours near sunspot maximum. They appear about 5 or

~——— —



20 minutes after the start of a large flare, and last
for about 10 minutes. The distinguishing feature of |
Type II bursts is a systematic drift from high to low i
frequency at a rate of about 1 Mc s, ;’
Type III bursts are fairly common, with three per ‘j
hour occurring during solar maximum. Individual bursts

last for only ten seconds, but occur in groups of ten or '

so (see.Figure 1). They occur near the start of either

eye

a large or small flare. The important characteristic of f
a Type III burst is a rapid drift from high to low fre-
guency, at a rate of 20 Mc s_l. There is also a type U
burst, which is a variant of a Type III burst in which

the frequency drift reverses direction, and drifts back

toward higher frequencies.

Type IV and V bursts are continuous radiation
following a flare. The Type IV is rare, and usually
starts after a Type II burst, although not all Tvpe II
bursts are followed by a Type IV burst. The Type IV is
a smooth, often featureless emission, over a very broad
band from centimeter to decameter waves, lastinag from
10 minutes to a few hours. The Type V is a similar
continuum event which follows about 10% of Type III
bursts.

Various mechanisms have been proposed to describe
the many components of radio emission (see Wild and !

Smerd, 1963 and 1972). Bremsstrahlung is responsible
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for the quiet sun emission and the slowly varying
component, and may be important for bursts on centimeter

wavelength scales for which the corona is optically

e — -

thick. Gyro-synchroton radiation from energetic elec-
trons spiraling in magnetic fields can account for con- . |

tinuum bursts. Radiation from plasma waves is the cause

of Type II and Type III bursts, and perhaps some contin-
uum storms also. The excitation of plasma waves in
Type II bursts is attributed to a magnetosonic shock
wave, and in Type III bursts, a high veloncity electron
stream.

The study of radio bursts, in particular, the Type
III bursts, has stimulated the development of new plasma
theory for the description of nonlinear wave phenomena.
There are many problems posed by the conversion of

plasma waves into radio emission and the behavior of

plasma waves at high amplitudes.

The Type III Burst ]

The explanation of Type III bursts as due to plasma 1
oscillations was proposed by Wild in 1950. The typical

spectra of a Type III burst (as in Figure 1) shows the

rapid drift from high to low frequencies, and the
appearance of identical spectral structures instantan-
eously at two frequencies. The drift can be attributed

to the propagation of the source of plasma waves outward
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through the corona into regions of lower electron density,
and slower plasma oscillation. This requires a source
traveling from 1/6 to 1/2 the speed of light, such as a
particle beam ejected by a flare. This beam can generate
plasma waves by a well-known instability (se2, for
example, Mikhailovskii, 1974; or Melrose, 1977). The
appearance of the double structures is evidence of emis-
sion at the fundamental plasma frequency, and its harmonic
at twice the plasma frequency.

Modern observations are consistent with this picture.
High resolution radio heliograph pictures show the posi-
tion of different frequency emission at different charac-
teristic heights (see Figure 2). In addition, satellites
have detected the plasma oscillations directly (Gurnett
and Anderson, 1976 and 1977). These plasma oscillations
are observed as narrow band spikey electrostatic noise
near the local electron plasma frequency. The oscillations
are confined to small regions of space, with tyvical di-
mensions of 10 km (Smith and Nicholson, 1979; Lin, 1979).
Satellites also detect high energy particles and electro-
magnetic emission (Fitzenreiter, Evans, and Lin, 197s6).
The particles are electrons with energies from a few to
several hundred kiloelectron volts (Lin, Evans, and
Fainberg, 1973). The number of electrons in the stream,

ny o is small compared with the background density, n
-6

OI

nb/no < 10

(Smith and Nicholson, 1979; Lin, 1979).

dactastutes
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At

(b)

FIGURE 2. Radiocheliograph contours of brightness
temperature for Type III bursts, 1980 April
27, at 0228 UT; (a) at 160 MHz, and (b) at
43 MHz. Contours indicate relative tempera-
ture. (Courtesy of R. Stewart.)
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The appearance of the electron stream is simultaneous with
the observation of radio emission, but the plasma wave

turbulence occurs nearly 20 minutes later (Lin, 1979).

Theory of Type III Bursts

The areas of theoretical interest in Type III bursts
can be identified as the propagation of the electron
stream, the plasma wave generation, and the radiation
(for recent review of these topics, see Nicholson and
Smith, 1979). There are two useful approaches to these
problems. One is a quasilinear theory, which treats the
interaction of the particles and waves, but ignores the
interaction between waves. The other is to ignore
changes in the particle distribution function, but
include wave-wave interactions in a reasonably complete
way. A complete analysis in more than one dimension
including both wave-particle and wave-wave processes is
desirable, but difficult, and is not really justified
until the steady~state characteristics of plasma turbu-
lence are better understocd.

The quasilinear calculation assumes that the
exciting stream is sufficiently weak and broad in
velocity that quasilinear relaxation is the dominant
effect (Smith, 1974). Ordinary quasilinear theory pre-
dicts that the electron stream will rapidly lose its

energy to waves, and will not propagate away from the

ey - —




15

sun (Sturrock, 1964). However, when inhomogeneity in
time and space is allowed, almost all the wave energy is
reabsorbed by the stream (Ryutov and Sagdeev, 1970;
Takakura and Shibabhashi, 1976; Takakura, 1977). As a
result, the stream can propagate for several A.U.
Magelssen and Smith (1977) performed a numerical calcu- ;
lation for Type IIl1 parameters over the entire distance i
from the sun to the earth. Their results are consistent
with electron observations at the earth. However, the
electrostatic field amplitudes they find are large enough
so that wave-wave interaction is possible.

The theory for wave-wave interaction is based on
equations derived by Zakharov (1972). Applied to the
Type III problem, this theory ignores the time dependence
of the electron beam distribution function due to gquasi-
linear relaxation and velocity dispersion in the beam.
This can be justified when the nonlinear wave time scales
are short. Papadopoulos, Goldstein, and Smith (1974)
showed that Langmuir waves in Type III bursts could drive
the oscillating two-stream instability at wave energies
lower than given by quasilinear theory. This work was
extended by Hubbard and Joyce (1976), Galeev, Sagdeev,

Sigov, Shapiro, and Shevchenko (1975), Smith, Goldstein,

(1977). All of these works are in one dimension alona

the stream direction. The importance of the second

and Papadopoulos (1979), and Rowland and Papadopoulos '

e —
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spatial dimension was pointed out by Bardwell and

Goldman (1976), who showed that for a monochromatic pump
wave the oscillating two-stream instability could occur
in a direction perpendicular to the stream direction.
The two-dimensional work of Bardwell and Goldman was
extended by Nicholson, Goldman, Hoyng, and Weatherall
(1978) , who used the plasma wave distribution given by
the quasilinear calculations {Magelssen and Smith, 1977)
as an initial condition in a numerical simulation of the
wave equations. They found that immediate soliton col-
lapse occurred in two spatial dimensions, and the col-
lapse is independent of and proceeds faster than any
associated parametric instability. The collapse takes
almost all of the wave energy out of resonance with the
beam. Thus, in principle, wave turbulence effects may
play- an important role in the stream propagation.

The basic processes for transforming plasma waves
into electromagnetic radiation was first described by
Ginzburg and Zheleznyakov (1958), and further studied
by Tsytovich (1970), Melrose (1974), and Smith (1970).
One process involves the scattering of plasma waves (p)
on charge clouds surrounding thermal ions (i), resulting
in the emission of a photon (t) near the plasma frequency

wpe:

p+ i~ t(wpe) . (1)
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The process for second harmonic emission is the coales-
cence of two plasma waves to generate a photon at twice

the plasma frequency:

. |
+ p'*t(2w . 2
p p ( pe) (2) r
] It has been shown that the Type III radiation can be

explained by the observed plasma wave levels by this

theory (Smith, 1977). However, the theory of Type III

emission will not be complete until the effect on radia-
tion of strong Langmuir turbulence, such as soliton col-
lapse, is understood. This is the subject of much
current work (Brejzman and Pekker, 1978; Papadopoulos

and Freund, 1978; Goldman, Reiter, and Nicholson, 1980). i

Preview and Motivation of Present Work

We have seen that the central aspect of the Type III
: problem is the nonlinear evolution of Langmuir waves
driven by an electron beam. 1In this work, we consider
the effect of a weak magnetic field on two-
dimensional wave processes. We use a very simple model

as in Nicholson, et al. (1978), in which waves driven by L

the beam are represented by a finite number of growing
wave modes in k-space with a finite wavenumber and
bandwidth (see Figure 3). We will ignore particle-wave

interactions beyond this beam instability, but will allow

the beam waves to interact with other Langmuir waves. i 3




FIGURE 3.

y t
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]
Model of beam emission of Langmuir waves in k- :

space. Shaded region represents growing
wave modes.
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The basic nonlinear wave interactions included are due to
the ponderomotive force, which tends to expel charged
particles from regions of large electric fields, and an
index of refraction effect from variations in plasma
density which tends to focus the waves.

The linear growth of the modes interacting with the

beam is described by the warm beam growth rate (Melrose,

1977)
2 2
n y— w ~y /2
Y=“’RH§ 1(2Rz)yses '
o k Avb
(IR (3)
g—_——— 14
/2kAvy

where w, is near the plasma frequency; nb/no - 107% is

the ratio of the beam to background electron density; k
is the wavenumber of the wave; vy~ ko is the mean
velocity of the beam; and Avb ~ % Y is the spread in
beam velocity. The maximum growth rate occurs along the
beam direction and, for these parameters, has the value

Y/wR ~ 10-6 The fastest growing wave has the wavenumber

ko given by
w
= R __ = =5 ok
kokDe = VoAV, xDe = 3.5x10 T, (4)

where T is measured in K. The Debye length, ADe' is

given by
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The Debye length and the resonant wave vectors, derived
from the temperatures and densities in Table 1, are
given for various heights in the corona in Table 2.
Although ko is the fastest growing wave, there will be
a finite band of growing waves near ko which will have
significant growth rates. The spread in wavenumber par-
allel to ko is due to the dispersion in velocity of the
beam. However, even for a one-dimensional beam, there
is a spread in wavenumber perpendicular to ko also,
because of the angular dependence in Equation (3).
These widths, roughly estimated from Equation (3), are
Ak” ~ 1/10 ko; AkL ~1/4 ko' These estimates motivate
the choice of Y/mpe, k,» and Ak in future numerical
simulations.

Most theories of wave-wave effects on Type III
bursts have disregarded the magnetic field. The magnetic
field is generally ignored in the context of Langmuir
waves when the electron cyclotron frequency is small
compared with the plasma frequency. The electron

cyclotron frequency is given by

7 -1
Wee = 1.76x10° B rad s ’ (6)

(B is in gauss) and the plasma frequency is found from

w__ = 5.64x10% n(;5 rad s”

pe

1 (7)

3

).

(ne, the number density of electrons, measured in cm~
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TABLE 2
IMPORTANT PARAMETERS IN THE TYPE III PROBLEM
FOR DIFFERENT HEIGHTS IN THE CORONA
r/R A (cm) (s-1 (s_1 k A fgg
o] De ce pe o De w
pe
7 8
1.2 .84 5x10 5%10 .04 .1
2.0 5 5x10° 1x108 .05 .05
10 70 2x10° 6x10° .04 .03
20 430 5x10% 3x10° .03 .02
100 550 2x103 3x10° .015 .01
215 1400 5x10° 1x10° .015 .005
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Using the data from Table 1 for the solar corona, we can

calculate the values of Woe and wpe for various heights
in the corona. The results, given in Table 2, show that

for the average values of density and magnetic fields in

the solar corona, the cyclotron frequency is much less

than the plasma frequency.

Are these values for wce' derived from the average

condition of the magnetic field, appropriate for the

environment of the Type III burst? To answer this ques-

tion, one must consider the possible magnetic fields

created by the electron beam. It turns out that when the ;
background electron plasma density exceeds that of the

beam (nb << no), a reverse current appears which tends j
to cancel the magnetic field indudced by the beam

(Lawson, 1977; Levine, Vitkovitsky, Hammer, and Andrews,

1971; Hammer and Rostoker, 1970; and Cox and Bennett,

1970). Furthermore, the return current is contained

within the same volume as the beam when the time for a

signal to cross the beam of dimension b at the speed of

light takes longer than the response time of the plasma.

When collisions are ignored, this response time is ~wpe-1' ﬁ
Therefore, the magnetic field is neutralized when

nb/n° << 1 and mpeb/c >> 1. These conditions are well

realized for Type III bursts. This conclusion is sup-

ported by measurements of the polarization of the radio

emission from the burst (Kai, 1970). If the magnetic
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field were not weak, the extraordinary component of the
radiation would be filtered out no matter what the emis-
sion mechanism, and the burst would be strongly polarized.
Strong polarization is not observed in the Type III
emission. On the average, the fundamental radiation is
35% circularly polarized and the harmonic radiation is
11% polarized (Dulk and Suzuki, 1980). The magnetic field
strength derived from these polarization data give values
of the magnetic field which are consistent with the
average coronal magnetic field structure described in
Table 1.

Although the cyclotron fregquency is much less than
the plasma frequency, magnetic field effects should still
be considered. For many wave interactions, it is the
dispersion of the Langmuir waves which is important, and
in the solar corona, the magnetic dispersion can be large
enough to compete with the thermal dispersion. There-
fore, even though the magnetic field appears in the basic
nonlinear equations as a perturbation, as we show in
Chapter 2, the effects on wave interactions must not be
ignored. This thesis examines this topic in detail.

In the third chapter we show how the magnetic field
can affect the dispersive behavior of linear wavepackets
and the nonlinear stability of large amplitude wave-

packets. The two examples illustrate many important

points which are explored in the later chapters. They

e ——— e L
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show that the linear and nonlinear wave behavior is very
different; that it is important to include at least two
spatial dimensions in the treatment of nonlinear effects
because one-dimensional solutions (solitons) are unstable
in more dimensions;and that even small magnetic fields
can produce significant effects on waves and wave inter-
actions.

These ideas are applied in the fourth chapter to
Type III bursts and parametric instabilities. This chap-
ter contains a review of current wave theories as they
apply to the Type III problem, and examines critically
the relevancy of one-dimensional treatments. In parti-
cular, the effects of wave amplitude, the magnetic field,

and finite bandwidth on parametric instabilities is

considered.
The most interesting effects of the magnetic field ’

are seen in Chapter V, in which we study the evolution

of the initial wave geometry given in Figure 3. Depending

upon the values of the central wavenumber, ko' the band-

widths, Ak, and the wave energy W, the real space wave- '

packets produced by the beam can evolve in a number of

ways. If ko is such that the wavepacket is traveling

slowly relative to the ion wave speed, the ponderomotive

effects can resonate strongly to expel plasma, and

refract waves into the regions of reduced plasma density.

For small W, however, this effect cannot overcome the
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dispersive nature of the wavepacket. For stronger W,

the self-focusing can overcome dispersion, and the wave- |

packet contracts or collapses (Goldman and Nicholson, j
1978). For even larger W, intense modulational insga- !‘
bility breaks up the wavepacket, and many collapsons ri
form. ;
For wavepackets in Type III bursts, the Langmuir ii
i

group speed is such that for distances from the sun

greater than ~10 Ro’ direct collapse can occur. For
distances closer than ~10 Rye the ponderomotive effect
cannot resonate strongly with the wavepackets. In this
case, parametric instability (induced scattering off

ions) occurs, producing a new initial condition, and

subsequent collapse (Nicholson and Goldman, 1978).

With a magnetic field, the collapse still occurs.
As a result of the magnetic field, collapsing wavepackets
become pancake-shaped, with the largest dimension trans-
verse to the field, and the collapse is delayed. This
can have several consequences in the Type III problem.
The different wave configuration can affect the emission
and polarization of radio emission, and the lengthened
collapse time can allow the beam to interact longer with
the waves in the plasma. A computer simulation shows
that this results in higher levels of electrostatic

energy. An analytic theory is presented which is
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successful in describing the new wave configuration and :

the slowing of the nonlinear processes. :

| 4

; i

| ]
|
}

! :

l i

; P9




CHAPTER 1II

WAVES AND WAVE INTERACTIONS

There are three simple linear waves in an unmagne-
tized two-component plasma; an electromagnetic wave, a
plasma wave, and an ion-sound wave (Krall and Trivelpiece,

1973; Jackson, 1975; Chen 1974). These waves have the

following dispersion relations:

w2 = wz + c2k2 ’

pe
2 2 2.2
w” = mpe + 3ve k® ,
wz = kzc 2 : (8)

w is the wave frequency, k is the wavenumber, and c is
the speed of light. The plasma frequency, wpe =
(4ne2n°/me)%, is the frequency of free oscillation of

electrons in a plasma (e is the electron charge, m, the
electron mass, and n, the number density of electrons).

. - X :
The sound speed is Cg = [(Te+Ti)/mi] . where m, is the

ion mass, and 'I‘e and Ti the electron and ion temperatures.

The electron thermal speed is Ve = (Te/me)%.




28

Two kinds of plasma motions occur in these waves.
When the wave is high frequency (w >> kve), the electrons,
because of their lesser mass, are easily displaced rela-
tive to the ions. This separation of charge causes an
electric field which tends to restore the electrons to
their equilibrium position. This oscillation occurs near
the plasma frequency. At lower frequencies (w << kve),
however, a quasi-neutral fluid displacement takes place.
Since the two kinds of motion are associated with compli-
mentary frequency ranges, two distinct time scales
naturally occur. On the high frequency time scale, there
are the plasma and electromagnetic waves. The ion-
acoustic wave is low frequency.

In a magnetic field, B, cyclotron motion is also
possible. However, because the cyclotron frequencies,

W = eBO/mec for electrons and w

= .C r io
ce eBo/ml for ions,

ci
can be assumed to be much less than the plasma frequency
in the solar corona, these motions are also distinct

from the high frequency motion.

Before deriving the nonlinear equations, we will
examine the linear properties of two waves, the oblique
Langmuir wave and the ion-acoustic wave, which will turn
out to be the relevant waves in this problem. The Lang-
muir wave is of special interest because it can be driven

to large amplitude by a plasma beam, such as a stream of

electrons from a solar burst, while the electromaanetic
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mode has a phase velocity greater than the speed of light,
so cannot resonate with a beam. And we will see later
that the ion sound wave interacts nonlinearly more
strongly with the high frequency wave field than do any

of the magnetic low frequency modes.

Langmuir Waves in a Magnetic Field

The Langmuir wave is an electrostatic plasma wave
with an electric field § parallel to the direction of
propagation, E. We want to know how a magnetic field
will affect its frequency and polarization.

The general wave equation for §'in the case of no
external field is found (Jackson, 1975) from Maxwell's
equations and linearized fluid momentum and continuity
equations:

32¢€

ot

+ w;éf - 3v, v(v €) +c ng x€ = (9)

We can include the effect of a small magnetic field as a
perturbation in the momentum equation when the frequency

of the wave (~mpe) is greater than the magnetic gyration

fregquency; i.e., Whe >> W g The result is the follow-
ing wave equation (Goldman, Weatherall, and Nicholson,

1980) :

- (Exwo) X u, =0, (10)
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where the vector Yo is in the direction of the magnetic
fleld, _Uice = wceb.
This equation may be solved with the usual matrix

methods to find normal modes. The change in the Lang-

muir wave natural frequency which is of order wze is
2 2 2.2 _ 2 .2
w® - wpe - 3k v,© = wce31n 8 , (11)

2, and 9 is the angle between k and B,-

2 2
<
when mpe << ¢k
If we write the electric field as the real part of

eE exp(iw t), the polarization vector e is

sin® 0 9 -sin€
iwcew e 1 wéa
e=| o Jr—gZsine |1 ]+g 555 o
k%c k“c
cosb 0 cos@
(12)

in a coordinate system with B, in the Z-direction and k
in the x-z plane (see Figure 4). The first term is a
vector in the direction of k. The other two vectors,
containing the transverse components of the field, will

be small when

“pe“ce << kzc2 . {13)

If we ignore the transverse parts of the field,
however, we can make errors of order wce/wpe in the wave
equation. This is because in the c?yxVx£ term, the

electric field is multiplied by an enormous factor. We
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FIGURE 4. Coordinate system with magnetic field B
in z direction. 6 is the angle between

wave vector k and B,
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see by substituting the vector electric field into this

term that
0 cos®
c2UxUxe = iw + o® sinscoss| o ). s
== pe ce ce
0 jsine

Actually, such terms due to the transverse part of the

field cancel or combine with other magnetic terms in the

equation:
0
wée 2

10he¥e * & = 1l U0 +0 2,2 Yoe

0

sin® 2
W Xw x & = —w? 0 + 0 SEE— 222 W (15)
—ce —ce = ce 2,2 w )
ck pe

0

After use of the polarization information (equivalent

to diagonalizing the wave matrix), the wave equation

becomes
2
3 _ .2 20 0. @ _ i2g 2
" £ wpe§ +3v V¥ £ - sin ewce§ . (16)

With this equation, the longitudinal approximation will
cause only small errors of order wcewpe/kzcz. The term
§sin29 represents the inverse Fourier transform of

§K§)kx2/k2, and is conveniently evaluated in k-space.

".n ,L:‘_t._“.

b e




et
. ol 2

33

Ion-Acoustic Waves in a Magnetic Field

The low frequency electrostatic ion-acoustic wave is
described by the wave equation (Krall and Trivelpiece,

1973) for the quasineutral density perturbation, én

2

3—3 én - CSZVZGn =0 . (17)
It

In the solar corona, the slowly varying wave time scale,

w1, is such that (Nicholson, et al., 1978)

w >> W 2> W . . (18)
ce Ccl

This means that we should add the effect of magnetized
electrons, while leaving the ions unmagnetized, to the
fluid theory of ion-acoustic waves. Using the electron
and ion continuity equation, the unmagnetized ion momen-~
tum equation, the electron momentum equation with the
magnetic force, and the assumptions of quasi-neutrality
and electrostatic fields, we obtain the dispersion rela-
tion (Nicholson, et al., 1978):

w W .
u)2 = kzc 2 + ce ci , (19)

s 2 2
1 - EE_ EEE -
2 2

kx w

ﬁz is parallel to go, as shown in Figure 4.
The dispersion relation has two branches, which are
plotted as a function of angle 6 in Figure 5. At 6 =0

(k parallel to B ), the two branches can be identified
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FIGURE 5. Electrostatic waves with B, # 0. w° vs. 8

holding the magnitude of k fixed.
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with an electron cyclotron wave and the well-~-known ion-
acoustic wave along the magnetic field (Jackson, 1975).

As the angle increases toward 8 = m/2 (k perpendicular

T —————

to go), the cyclotron branch evolves toward the lower
hybrid resonance, while the ion-acoustic branch shows a

substantial change only in a narrow region near 6 = m/2

of width ~ /5;751. This leads us to conclude that the
wave equation for ion-acoustic density perturbations is
the same as with no magnetic field, except for the wave -
vectors directly perpendicular to the magnetic field. E
These properties of the sound wave in a magnetic
field can be explained by a simple physical model in which "s
the motion of electrons is restricted to the direction of :
the magnetic field like "beads on a wire." This assump-
tion does not change the fact that the electric field !
must be in the direction of the pressure gradient, and  ?
the resulting wave equation has the same form as in the
unmagnetized case. But in order for the motion of the
electrons, which is now strictly in the direction of the

magnetic field, to be uninhibited by electron inertia,

we require that w << kzve. This gives us the condition

k (-7

m
z e |
* V] (20 ‘

There are many low frequency modes which exist when

|
i
the plasma is magnetized besides this one. We will r

S —
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investigate these in the context of their interaction

with nonlinear Langmuir waves in a later section.

Wave-Wave Interaction

Although the above linear waves occur on different
time scales, we can deduce several ways by which the
high frequency electric field and low frequency density
might be coupled together. First, suppose that the Lang-
muir electric field envelope is slowly varying. If the

displacement Xose = q§/mw2 of an electron in an oscillat-

s
ing electric field, ﬁ'= Ecoswt, is much smaller than the

length scale, L, of the inhomogeneity, then we can treat
the inhomogeneity as a perturbation. The net effect is
that over many oscillations, the electrons feel a force

away from regions of larger electric field amplitudes:

2 2
3 - a—. = - —a— ']; E
mx 3% Up X1 - (21)
- - mwo

This is the ponderomotive force, and Vp is the pondero-
motive potential. Although the force on iong is me/mi
smaller, the ions will be displaced also because of
electrical forces caused by the departure of the elec-
trons. The result is a decrease of the fluid density
in regions of large electric field.

The density irreqularities can also affect the high

frequency wave. From the Langmuir dispersion relation,

i
|
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we can see that the phase velocity of the Langmuir waves

depends upon the electron density:

w
~ =R& o n% (22)

This will cause the plasma waves to be refracted into

the regions of lower density. Together, these two non- fi

linear effects are known to result in plasma instability.
The particular contribution of this work is to include a
magnetic field in the study of the nonlinear behavior. 4
Before proceeding further, we will derive the nonlinear

coupled equations. ]

Derivation of Nonlinear Wave Equations

If there are two distinct time scales, we can

.;*
i

separate the fluid and field -quantities into two parts.
For example, the low frequency (slow time scale) component
of the fluid density n is found by averacing over the
period of the high frequency motions:

2m/w

=—=-(-D—
nL n o n dt . (23) '

0 ]
The part averaged out is fluctuating at the high

frequency:

If the averaging is to be useful, n must not change

- fm e e ———— - e e o -y i
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L significantly during the period of the fast motions.

Let the characteristic time for change in np, be called

T. Then the requirement for separable time scales is

|
|
!
|
5% << 1 (25) }:

The high and low frequency variables are defined in this

!
]
|
way: ‘

. (26) |

Notice that B, includes the background magnetic field,
§o’ and the background density, no, is contained in n; . i
Because the high frequency wave is electrostatic, there
is no EH term. The high frequency oscillation can be
factored out of the high frequency electric field by
writing it

iw_ t jw_ t
€ =Ee P° +E e P® | (27) \

E is called the "envelope" of the field. The superscripts

e and i refer to the two plasma species, electrons and

ions. When no superscript appears on the fluid quanti- ;

ties n, v, q, or m (density, velocity, charge, or mass),
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it is understood that the equation may be written for

either electrons or ions.

By time averaging, an equation containing two time j

scale quantities may be separated into two equations, ﬁi

one which is high frequency, and one which is low fre-

quency. We will analyze the fluid continuity and momentum

equations in this way. When the forces acting in the
fluid are electric, magnetic, and pressure, the fluid

equations are

v
—= . = nd nq - 2
n gz +ny-Iv o= €+ —= ¥xB - yv_“¥n (28)

where vy is an adiabatic index, and vs is the thermal

velocity.
Each variable contains a high and low frequency

part, so many components are involved in a product such

as nv:

nv = nHVH + nLvL + nHvL + nLvH . (29)

The low frequency quantity which survives the time aver- 2

age over the high frequency period is n; vy . The high

frequency quantity which oscillates at w is NV +0 V.

The fluid equations (for electrons or ions), after
separating the time scales and eliminating terms which

are of order 1/uwT or x /L, are

oscC

T
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1) high frequency:
an
H . =
3t T Lhyy =0
, . n.q
3_ - q - 2 _L-
nLSE Y " % m EpT Vs TP * me (XBp)
n.q
H = .
+—m—_€_L—0, (30)
2) low frequency:
an
L . =
3¢ Y Iy, =0
3_ . . - e
ny 5f Vp + Y ¥y o+ ongv ¥ vy - onp o &)
+ v 2Vn - n.v.xB. = 0 (31)
s — L mc I~LT=L ‘

The nonlinear term in the low frequency momentum

equation is the ponderomotive force:

2 2
— q°|E|
menL Yy ‘VVH =n —_— (32)
mw
pe
We can identify several nonlinear forces in (30)

which affect the high frequency motion of the electrons:
sn{g/mé, , (33)

¢ (nga/m) (34)

and n.(q/m)y,/cxdB; (35)
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én, €L' and 6§L are fluctuations due to the low frequency
wave. If n, and B, are the constant density and magnetic

field, then n. = n°+6n and B, = B *6B; .

L

The dominant nonlinearity in the high frequency
equation will depend on the character of the low fre-
quency wave. For example, the ion-acoustic wave has
density fluctuations, but because it is electrostafic,
there is no magnetic field associated with it. 1In this
case, the pressure term is largest, because the magnetic
term is zero, and the electric term is of order 1/L2k2
when compared with the pressure. On the other hand, the
Alfven wave has no density fluctuations associated with
it. Now the magnetic term is largest, the pressure term
is zero, and the electric term is again small, of order
1/wT. So the various low frequency waves will have
different nonlinear effects.

Notwithstanding the above remarks, the only nonlin-
ear term that we are going to keep is the pressure term.
The reasoning is that we are not interested in all of
the nonlinearities caused by all of the low fregquency
wave modes, only the largest one. The important low fre-
quency fluctuation will be the one which has the strong-
est influence on the high frequency wave. So we ask the

following question: if the plasma has large low

frequency density fluctuations, Sn/no, large magnetic

fluctuations, |6§L|/|§°|, and large electric fluctuations,
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|§i|/|§h|, which will the high frequency wave couple to

strongest?

To answer this question, we first take the ratio of

the magnetic nonlinearity (35) to the density term (33):

ERVIRES e g
dn/n w ‘ )
o pe :

If there is a nonlinear wave which has large density | 3
fluctuations, 5n/no ~ 1, and another nonlinear wave which
has large magnetic fluctuations, |5§L|/|§0| ~ 1, the
density perturbation causes the larger nonlinearity in

the high frequency equation since w << 1. We can

ce/wpe
similarly compare the electric field term (34) to the

density term (33) to form the ratio

ldéil/|§;| xosc
6n7ho L -

(37)

This also will be small since xosc/L << 1. Therefore, we

will limit our attention to waves which have large den-

sity fluctuations, and ignore the electric and magnetic

fluctuations.

Nonlinear High Frequency Equation

Keeping only the pressure nonlinearity, the high
frequency equations are identical with the linear ones
except that n, is replaced with n = no+6n. The deriva-

\ tion proceeds as in the linear example, except that w;e is
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now 4we2/me(no+6n). The nonlinear high frequency
equation is

32 4We2no 2 . 24,2
-a——z_é:+-—-ﬁ-—§+3ve_V__V_°§+s:Ln6wce§
t e
2
= 4;2 sn € . (38)

Actually, we are more interested in the slowly
varying behavior of the envelope field. This can be
easily obtained by factoring out the common multiples of

exp(-iw et) from the high frequency equation. Notice

P
that the term containing time derivatives is

2 -iw 2
SgEe P =(I5E- e, 5B el £
3t 3t P p
-iw_  t
. e P (39)

. 2
The term -wpeg cancels with 4me no/meg. Because the
envelope is slowly varving, az/atzg can be ignored
compared with wpealatg. The resulting equation for the

envelope field is then:

2 E + 3v 2

21wpe a—t & e

* 2 1 2 —_— em————
v VE W, SIn"EE = SnE

(40)

Low Frequency Waves

The introduction of the background magnetic field

produces a rich set of low frequency normal modes (Stix,

- hm e
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1963). Some can be described from the linearized ver-
sions of the low frequency £fluid equations. Others need
a more elaborate kinetic theory derivation. A partial
list of these modes and their frequency of oscillation
is in Table 3.

We have argued that the most important source of
nonlinearity in the high frequency equation is due to
the low frequency density perturbations. If we Fourier
analyze these density perturbations, the largest ampli-
tudes of ¢n{w,k) might be expected to be when w is near
some natural frequency of the plasma, mc(g). Therefore,
we solve for the density perturbations which are reson-
ant with each of the normal modes, and see if any mode
has exceptionally large amplitude.

The low frequency electron densitv perturbation may
be derived by first using the wave equation (including
the nonlinear currents) to find the amplitude of the
electric field. Next, the electron currents due to this
field are calculated from the linear conductivities. The
resulting density perturbation is found from the contin-
uity equation. The answer is a complicated, but general

equation for &n (Sanuki and Schmidt, 1877):

_ 2 4my iky
Sn(w,k) = -k-g  ° [5 Lggk <£'2' 2 }5) 2 p]
e c® e‘c e w
(41)

go is the low frequency electron conductivity, Ml is the

e -
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SAMPLE OF MAGNETIZED WAVES AND THEIR COUPLING THROUGH

DENSITY PERTURBATIONS WITH HIGH FREQUENCY LANGMUIR WAVES

Wave w’ A°
Ion Acoustic kc 1
(Partly Magnetized)
Ion Acoustic k cs 1
(Fully Magnetized) l 2
k-ij_
Ion Cyclotron W, < >
ci W,
ci
KLY 2 wce 4
Electron Cyclotron w__cosf = —_—
ce W W
ce pe
2
) w2_ 2 le 4
Electron Bernstein 2w ce =
ce 4 w2_w2 wce
UH
2
. 3 k-{-Ve
Lower Hybrid W w )
ce ci w
ce
) 2
2.2 w .\ [fe N
Whistler ke W cos = = sinze
2 .
w ce W va
pe
2
c
Aifven (Fast) kvA (v_s sin“8
A
c 2
Magnetosonic kvA =
(Partly Magnetized) Ya
kJ_v, 2
Alfven (Slow) k v =
1 Woy

-
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inverse of the Maxwell wave matrix, and wp is the Fourier
transform (a convolution) of the ponderomotive potential
[see Eq. (32)].

We can evaluate this expression for various normal
modes by making a resonant approximation. The result is
very interesting, because for each normal mode wc, we

can write an equation for dn in this form:

2 2
(wz-wg ) $n = wc A

o]

v
e}
T - (42)

On the left side of the equation is a linear wave opera-
tor on Sn, and on the right side is the nonlinear driving
term due to the ponderomotive potential. Notice that the
coupling is proportional to A°. For the ion sound wave,

A 1. In every other instance, A° is a smallness

parameter, such as csz/VA2 [where cg is the sound speed

and vA

The coefficient Ac, calculated for each of the normal

= 2 X . 22,2
(Bo /4ﬁmino) is the Alfven speed] or EL Ve /mce'

modes in Table 3, is given in the last column. 1In the

lower solar corona, when wz /w2 ~
ce’ "pe

of the order (using parameters from Bardwell and Goldman,

0.1, these numbers are

1976),
2 2
c k, v
s 1 L e -3
2% ' ~3 - ~10°7. (43)
v 0
A ce

These parameters have interesting physical interpre-

2
A

tations. csz/v is the ratio of the thermal to magnetic

Saaded

it
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energy, noT/(B°2/4n). In this case, we might deduce that
more of the wave energy is in the magnetic perturbations
than in the density perturbations. The other parameter
kzvezlw:e is the ratio of the thermal gyroradius to the
wavelength. This factor enters because the electron
motion across the magnetic field is restricted.

Without solving the complete, nonlinear equations,
what ceonclusions can we reach regarding the intensity of
the nonlinear interactions from the coupling coefficient
A% in Eq. (42)? With several simplifying assumptions,
we can derive an upper limit on the growth rates of
parametric wave instability. We will use this as an
indicatién of the relative significance of the various
low frequency wave modes in the nonlinear theory.

First we assume a simple three-wave instability
(see Figure 6) involving a large amplitude Langmuir wave
at (wo,ﬁo), an unstable Langmuir wave at (wL,EL), and a
low frequency wave at (mc,g). We can obtain a very
simple dispersion relation (Bardwell and Goldman, 1976)
by linearizing Egq. (40) (Fourier transformed in time

and space) and Eqg. (42) about the pump wave field, Eo:

(x-A+iYL)(x+iv) +22 =0 ' (44)

where the frequency mismatch terms are defined




|
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i
é
-
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FIGURE 6. Three-wave wavenumber matching condition. ‘
i
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We have included the phenomenological damping of the
Langmuir and the low frequency modes, Yy, and v, respec-

tively. The term A2 is defined

2
A2 W [ﬁ (____EO )]AU (46)
w2 Tw 8 \8mn_T
pe P°

In order to estimate the maximum growth rate, we
now assume 1) perfect frequency matching, A = 0; 2) w is
nearly resonant with the low frequency mode, so that
x ~ iIm(w) = iFO; and 3) negligible Landau damping of

the high frequency Langmuir wave, Yy, = 0. Equation (46)

solved for T gives

rd =-§- (v =/v2+422 ) . (47)

For waves which are weakly damped, the condition that
VU << X is very easy to satisfy, and the growth rate is

given by
I~ -~ -x . (48)

This may not be true for the ion-acoustic wave,
which is heavily damped at equal temperatures, v ~ csk.
Let us consider the consequences of damping on the
growth of the ion-acoustic mode. To be specific, we
choose k = 0.078 kDe' which is the wavenumber matching

required near a few solar radii for a three-wave decay

instability during a Type III burst (Bardwell and
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Goldman, 1976), and a pump energy E°2/8wnoT = 1074,

For these parameters, vz/k2 = 144, and the growth rate
given by (47) is reduced by 1/6 when compared with (48).
Generally, the smallness parameters A° in Table 3 are
smaller than 1/6, so that the damping of the ion-
acoustic mode can be ignored in the context of this
discussion.

Therefore, to the extent that our assumptions have
led to the most favorable conditions for growth, (48)
can be viewed as an upper limit to the growth rate.
Because T « Ao, we can conclude that for instabilities
involving two Langmuir waves and a low frequency wave in
a weakly magnetized field, the growth rate will be
largest if the low frequency wave is the ion~-acoustic
wave. Without further justification, we will extend
this conclusion to wave interactions in general, and

exclude the magnetic modes in the computation of &n.

Low Frequency Nonlinear Equation

The above discussion motivates the derivation of
the low frequency wave equation under assumptions which,
in the linear regime, give the weakly magnetized ion-

acoustic mode. We will assume

& = -1 . én, ~ &n; = ¢n ,

v €/v € < 1. (49)
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Together with these assumptions, Eq. (31) leads to the

following low frequency equation:

2 2
2 n e“|E]|
(3—3 + c 2V2> §p = == V2 (————5-) ’
at s my m_w
e
kz Re §

Summary of Nonlinear Equations

The basic equations describing the behavior of

intense Langmuir waves have been derived from the follow-

ing equations: the electron and ion continuity equations,

the electron and ion force equations, and Maxwell's
equations. The treatment is general enough to include a
background magnetic field. Several assumptions used
during the derivation are:

1) All quantities are high or low frequency:

2) Displacement of electrons in the high frequency
motion is much less than the scale length of the slow

variations;

3) Electric field energy density is small compared
to the thermal energy density;

4) Magnetic field is weak--wce << wpe'
In addition, the following important assertions

were found to be justified:

o ————————— e o
.- .

. e
PR LR 1 M

]
i
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1) The high frequency field is electrostatic;

2) Density nonlinearities are more important than
magnetic nonlinearities i? the high frequency equation;

3) Density perturbations due to magnetic modes are
negligible.

The fluid derivation of the wave equations does not
include damping. Kinetic theory shows that both the
Langmuir wave and the ion-acoustic wave are damped by
the interaction of thermal particles with the wave elec~
tric fields (Landau damping). This effect is added to
the equations in the form of phenomenological damping
rates Ve and vy for the Langmuir wave and the ion-~
acoustic wave, respectivelyv.

Before writing the equations in their final form,

we define the following convenient units:

(t]l =

Njw

1
n
_3 ;_‘“_i)
[x,y] = 2 (n m, xe ’

4 me
[n]=3n;n—in ’

o
X X
[E] = n (;f) (EEQ;QE) ' (51)

, _ =1 _ W2 K
where the electron Debye length is Ke = kDe = (T/menpe)

n th d. i i = 1] . .
and e dimensionless ratio n (YeTe+YlTl)/Te

‘!
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In these units, the coupled equations for E and n

are:
(i . Xg + Vz - stinze)E = nE ,
3t 2 = =
32 3 2 2,2
f= +iv, == -V )n = V°|E|“ . (52)
3 2 i at =
t
The magnetic parameter is
X
q - _ce (_3. 1 ﬁ) (53)
wpe 4 n m,

These dimensionless units (Nicholson, Goldman,
Hoyng, and Weatherall, 1978) will be used throughout
this work except on occasion when dimensional units are
used for the sake of familiar notation. These should
not be confused with other units defined in the litera-
ture, e.g., Zakharov and Rubenchik (1973) or Goldman
and Nicholson (1978).

In the adiabatic approximation (Goldman, Rypdal, and
Hafizi, 1980) the inertia of the ions is ignored, which
allows (3/3t)n+ 0. The two equations can then be com-
bined to give a nonlinear Schroedinger equation for the

scalar envelope field E:

Vv
2_E+-2E + v2E - q2gin?

. 2 2
i3 > 8E + (|E|“- |E|“)E
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Numerical Simulation

We can solve Equation (52) numerically in time and
in two spatial dimensions using a split-step Fourier
method (Hardin and Tappert, 1973). The algorithm is
described in detail in a paper by Nicholson (1978, un-
published). The idea is to use complimentary grids in
real space and wavenumber space, where each grid consists
of 64 points in each dimension (or sometimes 32 points
when computer time is restricted). This allows the solu-
tion of the linear part of the equation in k-space and
the evaluation of the nonlinear terms in real space.

The introduction of the magnetic field is made by
two changes in the algorithm. One is to add the magnetic
dispersion to the thermal dispersion of the high fre=-
quency waves in the linear part of the program. The
other is to suppress the low frequency density fluctua-
tions directly perpendicular to Eo when kve/wce < 1.

For equal electron and ion temperatures, the ion-
acougtic mode is heavily damped. Nonetheless, the wave
behavior is adequately described by including a phenom-
enological damping, vy 2csk (DuBois and Goldman, 1965;
Bardwell, 1976; Bardwell and Goldman, 1976; and
Weatherall, Nicholson, and Goldman, 1979). The damping
in the high frequency equation can be set equal to zero,
v, = 0, because the wavenumbers contained in the numeri-

e
cal grid are small and only very weakly Landau damped.
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The simulations described in later pages of this
work involve two sets of parameters for the solar corona

which we have summarized below:

1) 1.1 R
_ 8 -3
n, = 10" ¢cm
Te = Ti = 140 eV
_ -1
ko = 0.05 ADe
_ 8 -1
wpe = 5.64x10" s
ADe = 0.88 cm i?
Wee = 0.1 wpe for Bo = 3.2 gauss !
4
2) 0.5 A.U. 4
= -3 |
ne 50 cm ;
Te = Ti = 20 eV
k_ = 0.011 A-L
o * De }1
_ 5 -1
wpe = 4x10~ s ;
Ape = 470 cm s
4 i
ce pe

w_ = 0.01 w for B = 2.3x10 * gauss r
y




CHAPTER III

LINEAR AND NONLINEAR LANGMUIR WAVEPACKETS

Before solving the nonlinear equations numerically
for the time evolution of large amplitude Langmuir waves,
we should see what can be learned from two simple examples.
The first is a dispersive wavepacket of Langmuir waves.
Dispersion is a completely linear effect, and can be
studied numerically in the context of Equation (52) for
very low amplitude fields. The second is an interesting
example of a one-dimensional soliton. The soliton is an
exact, localized, nonlinear solution to Equation (54).
However, the soliton is unstable to two-dimensional
perturbation. Below we consider these two examples, and,
in addition, study the effect the magnetic field has on

dispersion and soliton stability.

Linear Dispersion

Dispersion of waves is due to the simple fact that
waves of different wavelengths have different natural
frequencies. One effect of dispersion is that waves of

different wavelengths travel at different phase velocities.

This has an interesting consequence when the wave is
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localized in space in a wavepacket. Because the wave-
packet is made up of many different wave components, and
these component waves do not travel at exactly the same
velocity, the packet will tend to spread out or to
disperse.

In order to examine this effect, we will look at
coherently phased Gaussian wavepackets. Gaussian wave-
packets have the convenient property that at later times,
at least to the extent of the approximations we will use,
they remain Gaussian shaped. Therefore we represent the
wave field (in one-dimension) as the real part of

ikoz
E(z) = A e ’ (55)

where ko is the central wavenumber, z is the spatial
dimensicn, and the envelope function, A(z), is a Gaussian

-
with width L,

Alz) = A exp[-(z-zo)Z/ZLZ] ) (56)

In linear theory, any field can be represented as a

superposition of plane waves. The time evolution of any '

of these component waves is found from the wave equation

and is independent of the others. For example, the

variation of the phase of a wave with wavenumber k is
¢ = w(k)lt, where w(k) is given by the dispersion relation.
The time evolution of the wavepacket can be found by

6

|

» . ‘l
Fourier transforming the packet into k-space, shifting |
\




o

the phase of each Fourier component by ¢(k,t), and trans-

forming back to real space again:

E(z,t) = f%-}f E(K) e

-0

o) Gikz gy (57

Absorption is ignored.

In k-space, the packet is a Gaussian centered around

- (k-k )21%/2 -i(k-k )z
E(k) =A_/2T L e © e ° . (s8)
In the limit that L becomes infinite (no wavepacket),
E(kK) is a §-function about ko. If L is finite, but there
are many oscillations in a packet width, then the spread
of wavenumbers around ko is small. ¢ (k,t) can be expanded

about ko’

= d
d(kst) = d(ky) + (k-k) Fx ¢ (k)

2
2 4d
(k-k )° —5 (k) + ... (59)
o dkz o

+

(N1

Now we can see how each order in (k-ko) affects E(z,t)

(Ginzburg, 1970).

To zero order, each wave mode in k-spice advances
: 2 2.2
h = =
in phase by ¢ wot, where Wy wpe + 3ko Vo *

case there is no dispersion. The integral (57) is

In this

easily done to find the real space field:

E(z,t) = A(z) exp(ikoz-iwot) . (60)
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Notice that the packet envelope itself does not move,

although the waves inside the packet propagate with the

phase velocity, wo/ko.

To the next order, the phase is linearly dependent

on wavenumber. Now the integral (57) becomes

X
VIRV RS 3 NV U

dw
E(z,t) = A (z - aii t) exp(ikoz-iwot) . (61)

ol o

The packet moves without distortion with the velocity

f Az/tt = dw /dk_, called the group velocity. To this :

order, both the group and phase velocities are well ;

defined. A(z) can be any shape, not just Gaussian.

Finally, to second order, the expression for E

becomes more complicated:

_ ’ 1 . s
E(z,t) = Ao TFi5C exp(lkoz 1wot)

(z-zo—at)2 R
+ exp|- —f—_—TTTT'(l'iBt) ' 1
L(1+8°t7)
J 2, 2
;y o = d(x)o - 3Ve kO )
dk W
2 dz“’o 3Ve2 woz ;
8 = =5 = . (62)
L2 dk 2 L2 w 2
o o

We have used the dispersion relation for Langmuir waves

(8) in solving for a and 8. The maximum of the envelope, |

|E|, moves with the group speed as before. But now the

width of |E| is increasing with time. This is because
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neither the position nor velocity of the wavepacket is i
precisely defined. The coordinate uncertainty in the |
position of the waves is Ax = L, and the uncertainty in |
velocity is due to the spread of wavenumbers, Ak = 2/L. ’
In quantum mechanics the probability function of a free r
particle has similar behavior (Leighton, 1964).

These results can be extended to two dimensions of (
a wavepacket centered around x = x_ and z = z_, with L9 i

in the z-direction:

E(x,z) = Ao exp{-[(x-xo)2+(z-zo)2]/2L2} exp(ikoz) j)

(63) ij

The time behavior is a generalization of (57):

1
E{x,z,t) = J- j‘ E(k_,k.)
(2")2 J J X'z ﬁ
* explilk z+k x)lexp[-i¢ (k)] dk dk . (64) |

To first order in (5—50), the phase propagates with the
velocity Xph = wo/koﬁ, and the packet envelope moves

with the velocity v = dwo/dgo, as one would expect. \

gr
The expansion of ¢ (k) to second order in (k-k) is

= 3 1
o(k) = ¢(£0) + (k-ko). Tk ¢(50) + 3 (k*ko)_(k-ko)_
i i j i
3 _2 ,
. (k) . {65)
Bki akj =0
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(In the summation convention, sums over both coordinate

indices are implied by repeated decay indices.) If the

matrix (3/aki)(a/8kj)[¢(§o)] is not diagonal, the integra-

tion in (64) becomes very difficult. We will choose two
examples for which the matrix is diagonal: 1) an iso-
tropic plasma with a symmetric Gaussian wavepacket; and
2) an anisotropic plasma with 50 in the direction of go.
The equation for the envelope modulus squared has the

form (in either case):

1l = Aoz\/ 12 3 12 3
(1+0°t%) (1+8%t?)

[ (x-xc)2 ] [ (z-zo-Yt)z] (66)
‘exp |~ ———— | exp | - ——————+ | . (66
L2 (1+a2t?) L2 (1+8%t2)

When there is a magnetic field (case 2), the dispersion

parameters for Langmuir waves, as derived from (11), are

1 1 1 .2 .2 2
a = g . > Lz (mce+3k Ve Y
(o}
1 1 1 2 2
B =— — = (3k°v_.") ,
wo Kk 2 L2 e
(o]
2
v_“k
vy =322, (67)

The case with no magnetic field (case 1) is found by set-

ting the electron cyclotron frequency, w in the above

ce’

expressions to zero.

s

P
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Now we will use the computer to solve for the time i
behavior of a wavepacket of Langmuir waves. Actually, we
are solving the complete set of wave equations (52), but

for small amplitudes of the fields the nonlinear behav%or

is not important. We can compare the numerical results

with the analytic theory to verify that the code is doing

the linear physics correctly.

The initial wavepacket is shown in Figure 7 at an

early time. The plot shows contours of constant amplitude
for the envelope field in real space on a 64x64 point
grid. In physical units, the wavepacket contains waves ;
with wavenumber ko = 0.01 kDe’ where Eo points in the ;3
z2-direction. However, rather than belabor the physical }1
dimensions, we will express distance in terms of grid |
units Ax (4Ax is about 100 ADe) and time in the dimension- i
less units of the equations (one unit, T, is 220 electron '
plasma periods). The wavelength of the wave is about
5Ax, although this periodicity does not appear in the
pictures which plot only the modulus of E. The packet

widths, L, which are initially the same in both dimensions,

are about 24Ax, as seen in the picture. ﬁi
With no magnetic field, the group velocity, y, and

the spreading rates, a in the x-direction, and 8 in the

z-direction are

y = 0.4 Ax/T, o =0.,12/T, 8 = 0.12/T . (68)
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Initial linear Gaussian wavepacket in real
space. The contours represent regions of
equal electric field amplitude. The packet
envelope contains waves with wave vectors
centered about k, = 0.01 kpeZ. The labels

are scaled by 105, and the units are those
of Eq. (51). The hatch-marks inticate the
separation between points in the grid. There
are 64 grid units on each axis,
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FIGURE 7. Initial linear Gaussian wavepacket in real L
space. The contours represent regions of =
equal electric field amplitude. The packet ‘
envelope contains waves with wave vectors
centered about k, = 0.01 kpeZ. The labels !

are scaled by 105, and the units are those

of Eq. (51). The hatch-marks inticate the
separation between points in the grid. There
are 64 grid units on each axis.
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At later time, T = 35, the wavepacket appears as in |
Figure 8. The packet motion between T = 0 and T = 35 is )
about 12 units, as expected from (68). The dispersive

increase in the packet widths should only be about 5%. ;

Most of the spreading in the direction perpendicular to
50 is due to the angular spread in k, which is Ak /k  ~
1/4. Because the component waves travel in the direction
of their wave vectors, some of which are not parallel or

even nearly parallel to Eo as we previously assumed, the

packet becomes distorted as it moves forward. This can-

not be avoided because the angular separation of modes is

r———

inherent in the algorithm.

T epkon

Nonetheless, this makes an interesting contrast to

the magnetized case, when Wog = 0.03 wpe: ]

Yy = 0.4 Ax/T , o = 0.40/T , B = 0.12/T . (69)

Now the spreading in the perpendicular direction becomes ;
more significant. In 15 time units, the increase in
wavepacket width transverse to the magnetic field is over

600%, as can be seen in Figures 9%9a and 9b. By comparing

-

with the previous example, we can deduce that most of the

spreading of the packet in the pictures is due to the

magnetic dispersion. This is remarkable because the

magnetic dispersion is only three times the thermal

dispersion.
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FIGURE 8. Electric field amplitude contours of the wave-
packet in Fig. 7 at later time, T=35 (7700
plasma periods). There is no magnetic field.
The packet has moved in the z-direction at a
speed determined by the Langmuir wave group
velocity. The spreading is mainly due to the
angular spread in wave vectors in the compon-
ent waves.
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FIGURE 9a) Wavepacket of Fiqure 7 at a time T=5 (1100
plasma periods). There is a magnetic field
in the z-direction. The spreading is prin-
cipally due to magnetic dispersion.
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FIGURE 9b) Wavepacket at later time, T=15 (3300 plasma
periods). The magnetic dispersion has caused
the spreading of the wave envelope in the
direction transverse to the field.
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In the above examples we have seen a wavepacket in
real space change its shape due to dispersion. It is
important to understand that in k-space there is no change
in wave mode amplitude: the plot of wave mode amplitude
in k-space is identical for all of the above figures.

What has happened is that the relative phases of these

modes (initially the same) change with time and mix in real

space to produce a less localized packet. The reason that
there is no change in amplitude of the wave modes is that
in the linear regime, every mode is independent of the
others (principle of superposition). The next example,
though, is highly nonlinear. The instabilities which

result from the interaction of various wave modes are

evident from the behavior in k-space.

Nonlinear Instability

Equation (52) has the following exact one-dimensional

soliton solution:

E_ = X0, (E) expli(k x-u t)] , (70) |
L
where

- 2, 4% -

. ¢g = ((1-v7)2]* /X sech /X ¢ , ‘
ng = -2} sech? /% £, !
1
E = x-vt , ) = (koz-wo) . Vv = 2ko . ;
i

L AL TIPS gt N S T
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The nonlinear Schroedinger equation, (54), also has a

soliton solution for which ¢_ = vY2ZX sech VX & . These

soliton solutions can be verified by substitution. (See

Scott, Chu, and MclLaughlin, 1973, for a general discus-
; sion of the derivation and properties of solitons.)
Although the nonlinear terms are large, they are exactly
balanced by dispersion.

An interesting gquestion arises as to whether or not
this solution is stable. Several investigations of this
problem have appeared in the literature (Zakharov and
Rubenchik, 1973; Yajima, 1974; Schmidt, 1975; Pereira,
Sudan, and Denavit, 1976). The stability is investigated

by perturbing the soliton:

E

(Eg + S§E) ¥ ,

n=n_+ $n , (71)

l with §E and dn such as
SE = [£(£) + ig(E)] exp[i(kox-wot)] cos kly exp(yt)

dn = n(&) cos kly exp(yt) .

Schmidt shows analytically that there is no marginal
stability (v = 0) for finite kl' Zakharov and Rubenchick
use the perturbation theory on the nonlinear Schroedinger
equation (54), and f£find that for k2 << ), the transverse

perturbations will grow at the rate 72 = 4kl2x. They

s nd

{
i
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agree with Schmidt that the instability should peak

somewhere around Ymax Az when k_L2 ~ X. Although in

numerical work, Pereira et al. find a similar maximum

growth rate, they do not observe any strong dependence

nk.
on

We can see the instability ourselves using the two-

dimensional code. First we construct the one-dimensional
soliton according to the above analytic forms for the
electric field envelope and density. For simplicity, we
choose V = 0 so the soliton remains stationary. The

initial conditions are plotted in Figure 10. Each unit

length, Ax, corresponds to 85 XDe' and each unit T is }a
220 plasma periods. The parameter /X = 0.5 gives the

soliton a half-width of about Ax, and amplitude E =

v8mnT « 0.01. Notice that the contours are parallel to

the y (transverse) direction, so that the initial condi-

tions are truly one-dimensional. 1In k-space, all of the
wave amplitude is on the kx-axis. That this is a valid
solution to the equations can be demonstrated by solving
the equations numerically. After a significant lapse of '
time, at T = 100, the initial conditions have evolved
unchanged, as seen in Figure 11.
Now we can test whether this is a stable solution.
First, we can test for stability to perturbations in the !
x-direction by adding a small amplitude random noise to

each k-mode on the kx—axis. This noise adds an




S

FIGURE 10.

[t s URS R SR B O 4 ) OO0 O (8 ON U L B B
' g )} -
- o O zzg

- g‘&‘ﬁ o o @ -
- 282 -
. 22 ! -
. 223 -
- — X
Lra o wialdo. s[ lt R |

One~dimensional soliton. Contours connect
regions of equal electric field amplitude.
The dimensionless units are those of Eq.
(51).
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FIGURE 11.
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Soliton after T=100 (22000 plasma periods). i
Since it is essentially unchanged from T=0, i
this demonstrates that it is an exact solu-
tion to the wave equations. 1
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|
|
I
insignificant amount of energy to the system: 1less than j

3 of the total energy. The soliton is stable to these

10~
perturbations after 50 time units, as seen in Figure 12.

Next we put the small amount of random noise in all
of the k-modes, including the transverse modes. Now the

soliton is dramatically unstable, as seen in Figures 13a,b. 1

But rather than becoming unstable to growing wave-like

perturbations (corresponding to the fastest growing kL of
the linear perturbation theory), the soliton evolves in a
very nonlinear way to "collapse" to smaller and smaller
length scales. Although the perturbation theory is
correct in predicting transverse instability, it is not
capable of describing the collapse process. Computer
simulation is sometimes the only recourse in this highly
nonlinear regime.

Something very interesting happens when a small

magnetic field in the x-direction is introduced. When ]

/

Yoo wpe = 0.03, the thermal dispersimn is roughly one-

half the magnetic dispersion:
3k%v 2 3k
> ~ Pe ~ 1. (72) )
2 w2 /MZ 2 3
ce ce’ "pe

w

The effect on soliton stability is seen in Figures 14a,b.

The magnetic field evidently slows down the collapse,
because at T = 40 the soliton is still in the early
.vs%ability stage. The soliton does eventually collapse,

v .1%er time, T = 50. Notice that the magnetized
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Soliton at T=50 (11000 plasma periods)

after -being perturbed in the x-direction.
This demonstrates that the soliton is stable
to one-dimensional perturbations.
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FIGURE 13a) Soliton at T=30 after being slightly per-
turbed in the y-direction. It is clearly }
unstable to these perturbations. P




FIGURE 13b) The perturbed soliton at later time, T=40.
The initial perturbation has disrupted the
soliton and nonlinear processes are causing

a localized region of intense fields to
form.
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FIGURE l4a) Soliton at T=40 after being slightly per-
turbed in the y-direction. There is a -
magnetic field in the x-direction. 1It is
still unstable, but the instability is
slower than with no magnetic field (compare
with Figure 13).
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collapsing soliton is more elongated transverse to the
field than the unmagnetized one. The magnetic dispersion
has the same effect on the linear wavepackets. However,
the difference in this case seems to be due to changes

in the spectra of the growing modes, not just the phase

behavior.

Summary of Magnetic Effects

From this brief examination of linear wavepackets
and soliton stability, we can make the following state-
ments concerning the magnetic field:

1) New physical effects can occur when the magnetic
dispersion term exceeds the thermal dispersion term. Let
k be some inverse scale length in the problem. Then the

magnetic field becomes important when

2 2.2
Weg > 3k ve . (73)

This may occur when the ratio of the electron cyclotron

frequency to the plasma frequency, w__/ is still a

ce wpe'
very small number.
2) The magnetic field tends to elongate wave
structures in the direction perpendicular to the magnetic
field.

3) One-dimensional solitons "collapse" when

two-dimensional behavior is allowed, but this collapse

takes a longer time in a magnetic field than without it.

B i SN U




CHAPTER IV

PARAMETRIC WAVE INSTABILITY

Nonlinear wave physics is of great interest in the
study of Type III solar radio bursts. The production of
electromagnetic radiation near the plasma frequency
(fundamental) and at twice the plasma frequency (harmonic)
during the bursts is due to the interaction of intense
Langmuir waves with ion density perturbations and other
Langmuir waves. The source of the intense Langmuir waves
is a beam plasma instability caused by a high speed
electron stream emitted from the sun.

The stability of the electron stream out to distances
of the earth's orbit has been an interesting problem since
Sturrock (1964) pointed out that quasilinear theory pre-
dicts that the stream loses its energy to Langmuir waves
very close to the sun. Further calculations, taking into
account the inhomogeneous nature of the stream (but
ignoring wave-wave interactions) show that the stream can
reabsorb Langmuir waves and continue to propagate outward
(Baldwin, 1964; Zaitsev, Mityakov, and Rapoport, 1972;
Zaitsev, et al., 1974; Magelssen, 1976; Grognard, 1975;
Magelssen and sSsmith, 1977; Takakura and Shibahashi, 1976).

However, since the wave levels in the inhomogeneous
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quasilinear calculations are still very large, nonlinear
wave phenomena might occur. But studies of induced
scattering of Langmuir waves (Sturrock, 1965; Kaplan and
Tsytovich, 1968) and wave instability have not indicated
important roles for these kinds of wave processes in pre-
venting the quasilinear relaxation (Zheleznyckov and
zaitsev, 1970; Smith and Fung, 1971; and Hayvaerts and

de Genouillac, 1974).

Recent work on the role of nonlinear waves in the
evolution of Type III Langmuir waves has centered around
two different theories. Smith, Goldstein, and Papadopoulos
(1979) propose the following scenario for the nonlinear
wave processes:

1) The electron stream from the sun associated with
Type III bursts causes the growth of plasma waves resonant
with the beam;

2) Resonant "pump" waves continue to grow until the
energy density reaches the threshold of the oscillating
two stream instability (OTSI):

3) The OTSI transfers wave energy to plasma waves
with lower phase velocity. The instability causes growing
ion density waves as well;

4) The buildup of the ion density fluctuations has
two effects: a) the reduction of the threshold for the

instability, and b) the scattering of long wavelength

e —y—

-

:
¥
i
]
&




82

Langmuir waves to shorter wavelengths (anomalous
resistivity effect):;
5) Eventually, Landau damping at the shortest
wavelengths balances the scattering. 4
Goldstein, Smith, and Papadopoulos (1979) do

numerical calculations with this theory to model Type III

bursts. All of this work is in one dimension.

Nicholson, Goldman, Hoyng, and Weatherall (1978)
solve the nonlinear plasma wave equations numerically in

two dimensions. Although ignoring quasilinear effects,

the treatment includes all of the wave-wave effects con- ?
tained in the equations: the decay instability, the OTSI, :g
modulational instabilities, and nonlinear "collapse." The ;
scenario of this theory is as follows:

1) Langmuir waves grow linearly due to the beam
instability, and have a finite bandwidth in k-space both
parallel to the stream direction and perpendicular to it;

2) when the waves reach a significant amplitude,

wavepackets begin to "collapse," resulting in a wider b ]

spectrum in k-space, and intensifying solitons in real

space; FA
3) A statistical steady state may be established as

solitons collapse, damp out (through Landau damping), and

form, leading to a saturation of electrostatic energy.

In both of the nonlinear wave calculations, the

saturation of the beam instability occurs in less than
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a second. Because the anomalous resistivity lowers the

threshold for the OTSI, Smith, et al. (1979) conclude {

that quasilinear relaxation does not occur. Nicholson,

e

e

et al. (1978) find that the wave levels of the nonlinear
wave theory are still comparable with those given by

inhomogeneous quasilinear theory. In many respects, the

two theories are far apart.

One of the central issues is whether or not the
nonlinear wave evolution is in one dimension, since includ-
ing another spatial dimension introduces completely differ- .
ent physics. We saw in the last chapter that stable soli-
tons occur in one dimension, but collapse rapidly in two
dimensions. Although it may be correct to treat parametric
instability as the dominant nonlinear wave process in one
dimension, in more dimensions collapse can occur before
the parametrically excited waves buildup to significant
amplitude.

The one-dimensional treatment originally derived from
the use of the dipole approximation for the beam driven
Langmuir waves (Papadopoulos, Goldstein, and Smith, 1974; 1
Smith, Goldstein, and Papadopoulos, 1976). As a result
of this approximation, the OTSI figured prominently and |
occurred along the beam direction. However, Bardwell and
Goldman (1976) showed that the OTSI will occur in a direc-
tion perpendicular to the beam as a result of finite wave-

number effects. They also found a decay instability, and
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a modulational instability in a forward cone around the
beam direction. In later work, Smith, et al. (1979)
continue to use the one-dimensional approximation and the
dipole geometry of the OTSI: they argue that broadband
effects suppress off-axis instability and raise the
threshold for the decay instability. Furthermore, they
never consider two-~dimensional effects of plasma collapse
because the magnetic field is presumed to prevent collapse
in the direction perpendicular to the field (Papadopoulos
and Freund, 1978; Smith, et al., 1979).

Below we will examine more carefully the assertions
used to justify a one-dimensional treatment, and show why
they are not adequate. We will find that 1) the parameter
regime for which the instabilities are intrinsically one
dimensional are not generally applicable in Type III
theory; 2) the background magnetic field does not suppress
transverse instabilities; and 3) the broadband pump does

not prevent the transfer of energy into unstable modes.

Instability Geometries in the Type III Problem

Large amplitude Langmuir waves are unstable because
perturbations in density cause modulations in the natural
frequency of oscillation of the Langmuir wave and lead to
parametric instability. The instability is due to the

coupling together of a number of wavemodes. If an intense

Langmuir wave has frequency We and wavenumber ko' a low
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frequency density wave with frequency w and wavenumber k
will modulate the frequency of the Langmuir wave (because
the frequency depends upon density) and couple to other
Langmuir waves at frequency and wavenumbers (w°+w, ko+k)
and (wo-w,ko-k). The electric fields from these waves
can beat with the Langmuir wave field to cause a modulation
of the ponderomotive force, and the growth of the density
waves. The instability results in parametric excitation.
The standard parametric theory (Nishikawa, 1968;
Nishikawa and Liu, 1976) involves a number of approxima-
tions. If there exists a single large amplitude wave in
the plasma, then the nonlinear terms in the wave equation
may be lineariezed to be first order in the amplitude of
this wave. This is justifijed only when the non-resonant
waves are linear waves, and the resonant waves form a
sufficiently narrow wavepacket about the central wave vec-
tor. Then the nonlinear processes can be assumed to be
dominated by a single large amplitude pump wave. Second,
the only Langmuir waves generated by the modulation of the
pump waves are the waves at (wotw,koik). Other waves are
assumed not to be resonant and have negligible amplitude.
This means that waves such as (w+2wo,k+2ko) have to be
well removed from the linear dispersion curve for Langmuir
waves.

The coupled wave equations result in new normal modes

described by the dispersion relation (Weatherall,




Nicholson, and Goldman, 1979):

w? + iv,w - k% = x?|g_|2
1 (o]
2
L u+
) 7 2. 2.2
wh (19, /2) -2k -k =k2-0% 0 2/
L2

- . (74)
. 2,.-2 2,. 2
w+(1ve/2)-2£-k +k“+Q (kL /k°)

Notice that the left side of the equation is. the Fourier
transform of the linear wave operator of the ion-acoustic
wave. The denominators of the terms on the right side
are the Fourier transforms of the linear wave operator of
the Langmuir wave envelope evaluated at £o+5 and k -k

2

angular terms are u “ = tE)zllhotglz.

(5,
A dimensionless pump strength is usually defined as
the ratio of the pump wave energy density to the particle

thermal energy density:

|8 _|%/an ERE
2 = 2 . (75)
nn T (3/4n) (mi/me)

Because the real and envelope fields are related by

€ = 2Re(E exp(-iwpet)], this definition of pump strength
will give one-quarter the strength used by Bardwell and

Goldman (1976) and other work. Therefore, we define W,

the dimensionless spectral energy, to be

(upshifted and downshifted from 50 of the pump wave). The

4
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4le_|2
(o]
(3/4n)(mi/me) )

W= (76)

This definition is consistent with the common usage.

The normal frequencies, w, which have a positive
imaginary part, are growing in time and are unstable. The
instabilities described by this dispersion relation with
Wog = 0 have been described in great detail in Bardwell
(1976) and Bardwell and Goldman (1976). We will elaborate
on only one point; that is, the circumstances for which
the unstable wavenumbers, k, are larger than the pump
wavenumber, ko. The premise that k >> k0 is an important
condition in the one-dimensional treatment of parametric
instability. We will investigate this question by examin-
ing the behavior of the OTSI under different sets of
parameters.

The geometry of the purely growing instability is
determined by the values of the pump energy and wave-
number, Wo and ko. If Wo << 10 koz, as is generally the
case for Type III parameters,then the instability will
have k <« ko' and have a maximum growth rate perpendicular
to the pump wave vector. On the other hand, with
Wo >> 10 koz, then k >> ko, the maximum growth rate is in
the direction of the pump wave vector, and the instability

is essentially one dimensional as in Smith, et al. (1979).

e AR LT g
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In either case, the OTSI involves two Langmuir
daughter waves. The instability occurs when the upshifted
and downshifted waves beat with the pump wave at nearly
the same freugency. The frequency mismatch, or the beat

frequency, §,, for the two waves is

o
"

I+

pey, )

Yw . (77

In the dipole limit, a) k >> ko' both daughter waves have

nearly the same mismatch because of the smaller wavenumber
of the pump wave, ko. The threshold for instability is

W, > 3k?/K2_ (smith, et al., 1979), Because k >> k,, this
threshold condition implies Wo >> 3k02/k§e. In the other

limit, b) k'GCkO, the mismatch frequencies are made equal

when k | k, (Bardwell and Goldman, 1976). The fastest

growing wavenumber for this instability is given by
KA = (W_/12)7 (78)
e o) '

Since the wavenumber k is assumed to be much less than
. . 2,2
ko' this requires wo << 12 ko /kDe’
Hence, we arrive at the important conclusion that as

the pump strength Wo increases, the OTSI goes from case

b) to case a).

. ———— e e
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We can demonstrate the validity of these conclusions
by solving the wave equation (52) numerically to find the
change in amplitude of the various k-modes with time.
This is not exactly the same as solving the dispersion
relation. No approximation has to be made in choosing the
set of wave modes such as the truncation scheme used to
limit the analytic treatment of four waves. The computer
program treats all of the waves. We find, however, that
the growth rates derived in this way are consistent with
those found from three and four-wave theories.

There is a further subtle difference between this
numerical simulation and the solution of the dispersion
relation. Because the dispersion relation is symmetric
under the transformation (w,k) + (w*,-k), an anti-Stokes
wave at 50+5 has the same growth rate as the Stokes wave
at 50-5. However, as pointed out in Bardwell and Goldman
(1976) , the anti-Stokes wave, if it is off-resonance,
attains much less amplitude than the resonant Stokes wave.
In fact, what happens in the numerical simulation, which
starts with the same initial amplitude (noise) in all
modes, is that the Stokes wave quickly attains steady
growth rate. Because the contour pictures discussed below
depict the largest amplitude growing modes at early times,
the nonresonant modes, even though they may later have

large growth rates, do not appear. Actually, the numerical

simulation is a better representation of the physics than
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the linear dispersion relation. The use of linear growth
rates to model the time evolution would result in
unphysical amplitude of the anti-Stokes modes.

Consider the case that the pump wavenumber is
koxe = 0.01. This corresponds to Type III excited Langmuir
waves at 1/2 A.U. A small amount of random phase noise is
put into all modes except the single pump mode, which has
very large amplitude. In Pigures 15a-d we show the wave
growth rates for different values of Wo after 15 time units
(3300 plasma periods). The arrow, which is four grid
units Ak in length, represents the wave vector of the pump
wave. Table 4 summarizes the numerical data.

In Figure 15a,W_ is 10_4, so W_ << 10 koz. The
spectra of Langmuir waves with wavenumbers less than ko is
due to a four-wave decay, or modulational instability.

The position of these modes at wavenumber ko/3 can be
confirmed analytically (Bardwell and Goldman, 1976;
Nicholson, et al., 1978).

As the pump energy is increased to Wo = 10-3 (Figure
15b), the growth rates become larger, and the region of
physically significant growth begins to include previously
nonresonant modes.

2

3 (Figure 15c) so that W, 2 10 k.,

When Wo is 3-10°
we see a change in the geometry from Figures 15a,b. The

OTSI with k | k  is evident, as well as forward and

backward scattering instabilities which might also be

L1
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FIGURE 15a) Parametric growth rates in k-space for
Langmuir wave excited by pump mode indicated
by arrow. k_ = 0.01 ky_ and W_ = 1074,
Regions of maximum growth are due to a four-
wave decay instability. The contours repre-
sent regions of constant growth rate from 0

to 1.5x107° Wpe at intervals of 0.73x107°
: : "5
Whe* Maximum growth rate is 1.8x10 Whe*
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TABLE 4
NUMERICALLY DETERMINED PROPERTIES OF PARAMETRIC
INSTABILITY FOR k_ = 0.01 k,_ AND VARIOUS
VALUES OF PUMP ENERGY

W k, A kA Y/
1074 -.002 0 0.9x10"°>
+.003 0 1.8x10°°
1073 -.005 0 12.0x10"°
+.003 0 8.7x10°
3x10°3 -.010 0 30.0x10°°
+.032 0 23.0x107°>
.010 .007 17.0x10°°
1072 -.015 0 68.0x10 >
+.032 0 65.0x10 2

B
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associated with an OSTI instability. Because this example
falls between the analytic limiting cases for the OTSI,
probably neither of these instabilities is "purely
growing."

2 2
and wo >> 10 ko .

Finally, in Figure 15d,W_ is 10°
The instabilities produce a spectrum of Langmuir waves
nearly symmetric in k-space and with wave vectors parallel
to and larger than the pump wave vector. This is the
dipole limit of the OTSI. Notice that the energy in the
pump wave 1s very large--over two orders of magnitude
larger than the saturation level of Magelssen's inhomo-
geneous quasilinear model.

These results for large Wo are in good agreement
with other work, such as Freund and Papadopoulos (1980),
which correctly treats the finite wavenumber pump. On
the other hand, the descriptions of the nonlinear wave
processes given in Smith, et al. (1979) and Goldstein,
et al. (1979) require instabilites which produce wave-
numbers much larger than ko' so their treatment is self-
consistent only for very large W, i.e., Wo > 10-2 at
1/2 A.U. Closer to the sun the wavenumber of the beam
resonant waves 1is larger because the temperatures are

higher; then the energy density which must exist to

produce a dipole geometry is even larger.
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Magnetic Effects

There is a substantial body of literature concerning
parametric instabilities in a magnetized plasma; see,
e.g., Kaw (1976), Porkolab and Goldman (1976), Kaufman
and Stenflo (1975), Sanuki and Schmidt (1977), and Dysthe
and Pecseli (1978). Nevertheless, most applications of
parametric instability theory to Type III bursts have not
treated magnetic field effects systematically. The first
work including the magnetic field in the wave-wave inter-
actions of Type III bursts was Weatherall, Goldman, and
Nicholson (1978). The subsequent paper by Weatherall, et
al. (1979), which generalizes the work of Bardwell and
Goldman (1976), discusses the role of the magnetic field
on the parametric instabilities in the lower solar corona.
We will review the results below.

The parametric growth rates in a magnetic field are
found from the dispersion relation (74) with finite Weog
The effect on the high frequency wave is included ex-
plicitly in the denominators on the right side. The terms
involving Wee are due to magnetic dispersion. We find
that the magnetic field has an important effect on the
low frequency wave only when kH/k < (me/mi)%. In order to
make this effect explicit, we must rewrite the low fre-
quency operator in terms of the kinetic susceptibilities

Xa for electrons and Xi for ions (Bardwell, 1976; Kaw,

1976; Weatherall, et al., 1979). 1In dimensional units:
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2 o202 1 1 2
w” + 2ive k Cq [Xe(wrk) + Xi(wrk)] wpi . (79)
The magnetized kinetic susceptibilities for species s are

given by Bekefi (1966):

@

-a w
1 s cSs
X === |1+ 7z e I (a_ )2 <C -n ——————-)}
s kzl 2 [ [ ?3 n s s /3 kv
e == irs
ts = — -
2 kIWS
k v
a, = wL S (80)
cs

In are modified Bessel functions, Vg the thermal speed of
species s, and 2 the plasma dispersion function (Fried
and Conti, 1961) which arises because the background
electron and ion distribution functions have been taken
to be Maxwellian.

The ions are unmagnetized if kv, >> » ., and » >> w

i ci ci

Then the ion susceptibility simplifies to (Montgomery,

1971): \
[}
_ 1

In the limit of "cold" ions, kvi << w,

= - -BL
X3 wz R (k_Lvi >> Wayr W >> kvi) . 82)




But, for equal electron and ion temperatures, the plasma
dispersion function must be evaluated numerically because
&y 1. In that case the imaginary part of X4 is of the
same order as the real part of Xy The large imaginary
part causes heavy damping.

The susceptibility for electrons has two interesting

limits. #first, when Ze > 1, the electron susceptibility

reduces to its unmagnetized value:

2
_ De
Xg = ;3— e {w << klwe) . (83)

x

In the other limit, Lo << 1, the electrons are strongly

affected by the magnetic field:

2
W
- _ce 2.2 2
Xe ;3— r (w >> klye, kL Ve << w ) . (84)
pe

This is smaller by kizvez/wge, the ratio of the thermal
gyroradius to the tr;nsverse wavelength, compared with
the unmagnetized value.

The transition between the two limiting cases occurs
when w ~ k v_. Evaluating w at the ion acoustic frequency,

Il e
we find that this occurs when

%

kll Me
% "\m;/ - (85)
1

Therefore, when k /k is smaller than this value, the

electron motion is affected by finite Larmor radius

effects. This result shows that this mathematical

- ————— ————
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treatment of the ion-acoustic waves in a weakly magne-
tized plasma is consistent with the physical model dis-
cussed in the second chapter.

We have solved the dispersion relation numerically
for growth rates using the following parameters for the

lower solar corona, at 1.1 solar radius:

_ a8 =3 _ _

_ 8 -1 — _ 2.1n"4

The calculation was done for two values of the electron
cyclotron frequency: Wog = 0 and Woe = 0.1. The latter
corresponds to a magnetic field of 3.2 gauss.

For the unmagnetized plasma, we can’ reproduce the
growth rate contours of Bardwell and Goldman (1976) as
seen in Figure 16. The are three distinct unstable
regions. The backscattered waves are unstable to the
parametric decay instability. The oscillating two-stream
instability (OTSI), for small k perpendicular to koo has
a real frequency much less than its growth rate. The
remaining "rabbit ear" structure is due to the stimulated
modulational instability, which connects smoothly with
the OTSI. These instabilities are discussed in detail
by Bardwell and Goldman (1976). With the kinetic damping

used here, we find that the growth rates are slightly

higher, but within a factor of two of the fluid growth

rates of Bardwell and Goldman (1976). The maximum growth

T
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rate for all three instabilities is near vy = 1072 W

For the calculation with Woe = 0.1, we use the
magnetized electron susceptibility (80). The magnetiza-
tion produces some changes in the growth contours (see
Figure 17). The most evident is the squeezing of the
k-space contours so that they lie closer to the axis
parallel to B,/ and the suppression of the OTSI. The
magnitudes of the maximum growth rates for the parametric
decay and stimulated modulational instabilities remain
the same. There seem to be two effects of including the
magnetic field. One arises from the new frequency match-
ing of the waves which causes the shift in k-space and is
responsible for the compression of the growth contours.
The other is the decrease of the low frequency electron
response with increasing magnetic field, in particular at
angles nearly perpendicular to the background magnetic
‘field. This causes a reduction of growth rates seen in
the OTSI.

To understand the shift in wavenumber space of the
growth contours, we can do an analysis for small values
of Woe’ SO that the shift Ak is small, Ak << k. When the
wave-wave interaction involves a near resonant Langmuir
mode, such as the anti-Stokes mode, k, - k., then the term

on the right side of the dispersion relation associated

with this mode is very sensitive to changes in frequency

and wavenumber. This is because the denominator involves
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the near cancellation of two relatively large. terms,

w and §_. Recall that §_ is the difference in frequency
between the pump wave with frequency wo(ko) and the

oblique Langmuir wave with frequency wL(Eo-g):

AN
N

mag _ ;. \:h 3.2 _ 2 .2
§_77 (k) = 3k°k .2 k w  (1-u_7) . (86)
AN

ce -

N

\\
With no magnetic field, thé\frequency mismatch is

k2 . (87)

o

unmag - . -
§UPMAT (k) = 3k -k,

Also, the real part of w can generally be assumed to be
near the ion-acoustic frequency (except for instabilities
which involve the anti-Stokes wave also), and the imagin-
ary part is the growth rate. Therefore, in order to
maintain a given growth rate when the magnetic field is
added, a shift Ak is necessary so that the difference

w - §_ is not drastically changed. This means that
wp(k) = 82M39 () = w_(k+ak) - T2 (k+ak) . (s8)

We can find, for small Ak and wce’ that

30k (egmk) = 5 0l (1-u %) + c_(lk+kl-1kD) . (89)

The last term will be small when |k -k|/kj_>> (me/mi)”.

If we deduce that the shift Ak is along the direction

of the Langmuir wave vector, 50-5, then we find that the

P
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new Langmuir wave vector is shortened by Ak, where
u)2
_ Ok -1 ¢ o sins . (90)
|k -kl |k k| “v

This simple result shows that the fractional change in
wavenumber is just the ratio of magnetic dispersion to
thermal dispersion. The magnitude of the change is pro-
portional to wie and sinze, where 6 is the angle between
B, and §°+§. This behavior is observed in the numerical
calculation,

The low fregquency effect is best observed for the
OTSI when k is nearly perpendicular to B, If we assume

the frequency is much less than the ion-~acoustic frequency,

we may ignore ions, and the dispersion relation, with

M, ~ u_ =1 vields the growth rate
¥o 12 Ak
W = —iwoi + i 7r k GRexe -8 . (91)
2 2

Unmagnetized, Rexe = kDe/k . Even with a magnetic field,
Xe is approximately the same except for wavenumbers
within angles (me/mi)!5 of perpendicular. For these
angles Rexe is much smaller, which causes the growth
rates to be smaller. 1In the case that k is directly

perpendicular to §o’

Rexzag kzvez
= << 1 ., (92)
Rexunmag " 2
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This leads to suppression of the instability. 1In fact,
this branch ceases to exist for magnetic fields such that
Wee/¥pe > ©0-005 when W, = 1074,

Besides the longitudinal decay waves, there also
exist a number of potential electromagnetic decay pro-
ducts. Some specific examples were considered in the
second chapter. We concluded that the longitudinal ion
acoustic wave had the largest effect in modulating the
high frequency wave and producing instability. Of course,
in a particular region of wavenumber space, an electro-
magnetic instability can have the largest growth rate.
For example, where the OTSI is reduced to zero growth
rate by the weak magnetic field, the region of k-space
which formerly contained the OTSI can now support a
parametric instability involving a magnetosonic wave.
However, the growth rate will be smaller than other
growth rates found above for the weakly magnetized case.
Thus, there is no indication that electromagnetic effects
would change the overall growth rate picture.

We have studied the effects for other values of
the magnetic field using numerical simulations. When
Woe = 0.01 wpe, there is virtually no change from the
unmagnetized growth rates except for the disappearance
of the OTSI. This is consistent with equation (90)

which predicts changes less than 1% in wavenumbers of the

unstable modes. For w = 0 and w = 0.1 w__,
ce ce pe

e e e -
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the numerical simulations show good agreement with the
above growth rates derived analytically from the dis-
persion relation.

Related work by Freund and Papadopoulos (1979)
examines magnetic field effects on Type III generated
instabilities at 1/2 A.U., but they use questionably

3 2

large values of pump energy (W _ = 10"°, 10 “). Since

{ Wo >> koz, this regime is different from ours as ex-
plained above. They ignore the effect of the magnetic
field on the low frequency motions. Generally, this
work agrees with ours in showing a shift of unstable
wave vectors to smaller perpendicular wavenumbers.

While they conclude that a small external magnetic field
acts as a stabilizing influence for waves with finite
kl' we consider this to be an overstatement since, apart
from the OTSI, growth rates with finite kL do not

decrease in amplitude.

Broadband Effects

If the pump energy is distributed in a number of
modes centered around the principal wave mode, the un- '

stable waves might no longer experience steady growth.

5 This is because the frequency spread in the broadband

b

i pump disrupts the ideal resonance conditions. Analytic
3 work which has been done for parametric instability with n
!
1

a broadband pump indicates that when the resonance width
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of the instability is smaller than the frequency of the
pump, the growth rates decrease and thresholds are in-+
creased (Thomson and Karush, 1974; Valeo and Oberman,
1973; Bardwell and Goldman, 1976; Smith, et al., 1979).
We will examine these effects in a simulation of Type
IIT wave processes.

Because of the finite wvelocity and angular spread
in the beam, the beam excited modes will have a substan-
tial width in k-space. For the lower corona, we will use
half-widths dk” = le = 1/6 L where k = 0.05 k. The
initial condition for the numerical simulation is shown
in Figure 18a. There is also a small amount of amplitude
(noise) in all of the other k-modes. The total energy
in the pump modes is Wo = 3-10-4. The k-space area of the
instabilities in Figure 16 is related to its resonance
width in frequency. We can deduce that the spread of

2y _

frequencies in the pump wave, Aw = 3/2[(ko+k)2-ko
0.0014 wpe' is less than the resonance widths of the

decay instability, but larger than the width of the SMI.
The OTSI is irrelevant because it is absorbed within the
bandwidth of the beam modes. Therefore, we might expect
the effect of the broadband pump on the stimulated

modulational instability to be more severe than on the

decay instability.
After 150 time units, the spectra in k-space is as

shown in Figure 18b. There is substantial amplitude in |




109

k max
Y 1

[ N A A B 2k I I D R D D R I D B BN

0

Froe st st v v ot enavenenny

[ JE I O I TN TN NN N NN B RO NN NN A R B N AN A | L A A A A A e e s B I I |
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and with energy w_ = 3x10~%. contours indi-
cate relative magnitudes. There is no '
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the backward direction due to the decay instability. The
k-mode of maximum growth is given by the three wave fre-

quency matching condition: !

5 (k k)2 5 k2
W W Wy = 5 ——;5——— wpe +ck -3 ;5— pe = 0 (93)
'De De
We find that ko - k = -0.028 kDe‘ The numerically found

decay wavenumbers agree well with the calculated value,
and the numerically derived growth rate at this wavenum-
ber, Y/wpe = 1.74'10-5 is within a few percent of the
theoretical growth rate given by Y/wpe = Wo/16. We con-
clude that the growth rate of the decay instability is not
affected by the finite bandwidth for these parameters.
The growth of the modes driven by the stimulated

modulational instability is about 40% less than in the
monochromatic case. The numerically determined averaged
growth rate (in the broadband case) is Y/wpe = 0.69-10°.

Although this is not much smaller than the decay insta-

bility growth rate, after 3-104 plasma periods (T = 150)
i the decay has undergone 3.6 e-foldings, and the modula-
tional only 1.4. This results in an order of magnitude )
difference in amplitude, so the modulational instability

does not appear in the amplitude plots.

It is remarkable that the broadband pump does not
! cause a large decrease in growth rates, even though the
spread in the pump frequency is two orders of magnitude

larger than the growth rate. This result differs from
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Thomson and Karush (1974) and sSmith, et al. (1979). From
Thomson and Karush we would expect a decrease in growth
rate by a factor of y/Aw. However, they interpret the
growth rate Y as the resonant width of the instability.
We find that the resonance widths of the instabilities are
much larger than their growth rates.

Because of the importance of the resonance widths, we
can speculate on a possible role of the magnetic field in
reducing growth rates. We have seen that the magnetic
field causes a decrease in perpendicular wavenumbers for
the decay instability. For some value of the magnetic
field, the transverse width will become less than the
bandwidth, and a decrease in growth rates, even on the
Eo-axis, could result. This has never been investigated.
For Type III parameters, the width of the decay insta-
bility, even with a magnetic field, is still larger than
the pump bandwidth. However, it may be an important
effect in the ionosphere or in laboratory experiments.

If we continue the numerical experiment, we find
that the pump modes quickly lose their energy to the
decay modes. These modes themselves are large amplitude,
and can drive other instabilities. In particular, they
can decay into Langmuir waves in the forward direction
at wavenumber kL = 0.016 kDe' The k-space configquration
at T = 240 (5'104 plasma periods) is shown in Figure 1l8c.

We can see that the second scattering is occurring in the
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forward direction as predicted. This nonlinear process
of successive decay is called cascade (Nicholson and
Goldman, 1978). Notice that although the cascade is
occurring along one dimension, the energy is going from
large wavenumbers to smaller wavenumbers. The flow of
energy to larger wavenumbers as postulated by Smith, et
al. (1979) does not occur by parametric instability. The
cascading can continue with another decay. The next
decay product will also be in the forward direction, at
kL = 0.005 kDe' However, this k is of the order of a
grid spacing, so unfortunately we must stop the simulation

at this point. Solitons might be able to form at later

times.

Summary

We have considered three subjects in the context of
Type III parametric instability: the dipole approxima-
tion, the magnetic field, and finite bandwidth. We find
that it is not correct to use the dipole approximation in
the Type III problem, unless Wo >> koz, which implies
tremendous wave enerdgies. The magnetic field causes some
new wave geometries, but does not limit growth of waves
transverse to the field. Finally, we have seen that
broadband effects limit the role of transverse instabili-
ties by reducing (but not eliminating) their growth.

However, the decay instability, which occurs on the




115

Eo-axis, is not affected by the broadband nature of the
pump because of its large resonance width.

There are other nonlinear processes which are
enhanced by broadband effects and are intrinsically
two dimensional, but do not appear in the above example.
One is the constructive interference of Langmuir waves in
the real space to create wavepackets which undergo a direct
collapse. In the low solar corona, where ko/kDe >
(me/mi)%, the wavepackets have a group speed larger than
the ion-acoustic speed, and collapse cannot occur without
some scattering, such as the multiple cascading in the
example above. For 1/2 A.U., when ko = 0.01 kDe' the
wavepacket can collapse directly, thus bypassing the
stage of parametric instability altogether (Nicholson,

et al., 1978). This is the subject of the next chapter.




CHAPTER V

PLASMA WAVE COLLAPSE

Besides being unstable to perturbations, wavepackets
of intense Langmuir waves can exwerience direct spatial
collapse (Zakharov, 1972). This occurs becatse the wave-
packet creates a density cavity by ponderomotive forces
and as a result becomes more compact in space and more
intense in energy density. Collapse has been studied in
two and three dimensions when there is no magnetic field
and is found to continue until length scales become of
the order of a Debye length, when particle-wave damping
removes energy from the collapsing waves (Nishikawa, Lee,
and Liu, 1974; Zakharov, Mastrvukov, and Synakh, 1974;
Degtyarev and Zakharov, 1974; Degtvarev, Zakharov, and
Rudakov, 197%; Degtyarev and Zakharov, 1975; Pereira,
Sudan, and Denavit, 1977; Niéholson and Goldman, 1978;
Goldman and Nicholson, 1978). Langmuir collapse is
expected to occur in Type III radio bursts (Nicholson,
Goldman, Hoyng, and Weatherall, 1978), and may be impor-

tant for other beam-plasma systems such as a radar

modified ionosphere or situations in the laboratory.
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In one dimension, collapse is prevented because
dispersion can balance the nonlinear ponderomotive force.
Other solutions, such as pulsating solitons, are possible
(Goldman, Rypdal, and Hafizi, 1980). An example of a
non-collapsing nonlinear solution in one dimension is
the soliton discussed in the third chapter. When varia-
tion in a second dimension is allowed, the soliton
"collapses."

In physical problems, a weak background magnetic
field is often present. We have already presented a
linear stability analysis for monochromatic Langmuir waves
in the presence of a weak magnetic field in the fourth
chapter. What will be the effect on collapse? Some
speculation is based on the argument that the magnetic
field makes the wave interactions completely one dimen-
sional (an assumption which our work does not support).
If this were the case, then collapse might be prevented.
Some early work by Petviashvili (1976) seemed to show
stable, pancake shaped solitons. However, other specula-
tive arguments seem to minimize the role of the magnetic
field in stopping the collapse (Nicholson, et al., 1978).

The first theory of collapse in a magnetic field
was done by Zakharov (1975). Of the three high frequency
plasma modes, he studied an electromagnetic slow extra-

ordinary mode. Therefore, this work has little direct

application to ours because we are studying beam-generated

- ————————— e e
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Langmuir waves. However, he did suggest that collapse
at the Langmuir mode frequency will be possible.

A subsequent Russian paper by Krasnosl'skikh and
Sotnikov (1978) takes up the problem of the plasma wave
collapse. They assume 1) a dipole pump, 2) very large
amplitude waves, |E|2/4ﬂnT >> me/mi, 3) one-dimensional
fields, E || z, and 4) strongly magnetized ion-acoustic
modes. Their analytic work derives from linear stability
analysis and the construction of self-similar solutions.
First, they show that the modulational instability (OTS)
produces a pancake shaped cavity because the unstable
wavenumbers have k << kH due to the magnetic field (see
also Freund and Papadopoulos, 1980). This is related to
Petviashvili's solution. Then they find that the cavity
collapses. As collapse occurs, the transverse dimension

of the cavity changes more rapidly than the longitudinal

dimension, until the latter is such that Ak,,/kDe > w0 g
)

ce

I

Then the cavity becomes symmetric and the magnetic field
ceases to have an effect on collapse. Numerical work by
Lipatov (1977), for the same kind of geometry and field
amplitude, confirms that the collapse is inevitable even
with a magnetic field. He does find, however, that the
magnetic field hinders the start of collapse.

Our work is fully two dimensional, treats a finite

wavenumber pump, assumes unmagnetized ions, and generally

involves weaker electric field energies. These are

P
DI B A B




119

conditions relevant to the Type III problem. We follow
the collapse from early times, starting with wavepackets
produced by the beam instability. These wavepackets are
initially spherically symmetric. We find that collapse

in the transverse direction does not proceed rapidly when
there is a magnetic field, and in fact the Langmuir waves
evolve in such a way as to reduce perpendicular mode
energy. As a result, the wavepackets evolve into a pan-
cake shape. At this point contact can be made with Soviet
work. If we could follow collapse to the time when

Ak“/kDe ~w__/ , we would expect that the results of

ce wpe
Krasnosel'skikh and Sotnikov would apply. However, this
is not possible because of the finite numerical grid. The
inability to follow the collapse to later times is a
serious limitation.

Besides being applied to different parameter regimes
and geometries, our work on Langmuir collapse uncovers
interesting new phenomena. As we shall demonstrate numer-
ically, even weak magnetic fields can prolong the time for
collapse of a broadband Langmuir wavepacket and alter its
geometry. This can have important consequences. If the
collapse times are prolonged sufficiently, they will
exceed characteristic times for Langmuir wave growth and

higher levels of strong plasma turbulence could be pro-

duced. Also, the altered packet shapes may affect the

pattern of electromagnetic emission and its polarization.
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We will show from a collapse virial theorem (Goldman,
Weatherall, and Nicholson, 1980) that the retardation of
the collapse is due to an altered geometry of the wave-
packet. In order to suggest how this new geometry can
be produced, we will apply perturbation theory to the
broadband initial conditions. Further arguments must
rely on the evidence of the numerical simulation.

Finally, we will be able to show that the measured
mean solar magnetic field can affect, but not prevent,

Langmuir collapse at 1/2 A.U.

Simulation of Type III Wave Processes

Langmuir waves in Type III bursts are expected to
grow linearly from a low level by interaction with the
electron stream and to have a finite bandwidth because of
the spread in velocity in the stream. As a result, a
pattern of intensifying Langmuir wavepackets will be
present in the solar corona whose spatial dimensions are
defined by the bandwidth of the randomly phased pump
modes. When these waves reach large amplitudes, they
will exhibit nonlinear behavior. One possibility is that
the wavepackets will undergo direct collapse. This is
possible at 1/2 A.U. because the group speed of the waves
is less than the sound speed, i.e., ko/kDe < (me/mi)k.

We can simulate these wave processes numerically

for 1/2 A.U. parameters. In k-space, we make a broadband

et
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pump consisting of 14 randomly phased modes centered
about a wavenumber ko = 0.011 kDe' and with parallel and
perpendicular bandwidths of Sk'{= 0.14 ko’ and !sdk~L

= 0.2 ko. These modes are caused to grow exponentially

6

at a rate y/w__ = 10 °, which is the growth rate due to

pe
the beam as inferred from quasilinear calculations
(Nicholson, et al., 1978; Magelssen, 1976). Initially

7 while the

the pump modes have an energy Wp = 6-10"
other modes have even smaller amplitudes. We do a case
with no magnetic field (which was also done in Nicholson,
et al., 1978), and two examples which have a magnetic
field along the direction of 50 such that: 1) Yoo =
0.01 mpe’ which represents an upper limit on the mean
magnetic field at 1/2 A.U. (Dulk and McLean, 1978); and

2) Woe = 0.05 wpe’

The time evolution of the wavepackets into collapse.

is compared in Figures 19, 20, and 21. There are two
noticeable differences between the unmagnetized and the
magnetized cases. One is that the collapsing wavepackets
are pancake-shaped in the magnetized case, with the larg-
est dimension transverse to the field. This effect is
more pronounced for the larger value of magnetic field.
Also, the packets take longer to intensify in the magne-
tized examples. This time delay is significant for the

larger magnetic field case.

————— e

<..'.1_z~'.).-u_,




122

.ad X A
X 006L = 1T T 1 .v|o~xmm - L “vuoaxmm -9 “vnoaxma ~- 9

“vnoﬁxma -V "vuoﬂxw - € "vnoﬂxv - C uvnoﬁxm - 1 :soTbisua p(aT3 SS9
-uoTsusuwtTp HUTMOTTIOI d9y3z 03 puodsaaaod ST3qe] INOj3uod °*PpPISTI OoT3oubew ou ST
ax9yl -°s3isanq III adAl buranp °n°v ¢/ 103 a2ae saojsuweaed °sporaad ewserd
moﬁxm.v = I (o) pue “mcﬁxv.w = 5L (q) «mcﬂxm.v = 5L (e) "Emmuum uoI3lo’19 ue Aq

padumd Hutroq soaem I0J SawWT3 99IYy3z I® 9oevdS TESI UT SINOJUOD PISTI OTAIODTH 61 MUNOIJ

() (q) , (e)

. P
m

x
-
x

o

T

~

e aRARiRARRARASRARS NSt ARARRARS SRRl

~—
Al aaaasAstangalanrasaintiaat AMSeA AR oARRRASARMtARRRAY LALLM

E‘l’""cvrv!vv'l'!r"'v"-"vlet'rr"ﬂI"‘Y"vv'

-
=




123

»
= o »
o}
"I.Illl.l.'l"ll"ll'l'l"ll"III'.II'llll"'lll'l'l"lll'llq. q 30
. I7e) ol
Q0 o
L -
— :
0n -~
— ™ ~ 0 W o
: = 5 o %
L 2 A o©
JJ .
N S g
W It
- 0 £
o
£ © ~
Bt et 00000000008t I I e I N i i 3 g 8
B
— U W o~
[ Te]
< By
= D a4 x
Evt‘lvv! yeee e R R RN R A F N N N R NNV AR R R RN R A RN AR NS RN NN <y
. ) - .
k_g g O
-t L
[ i
g b e
. - g
O S e i
e .
= ~ &~
) 3 .
S Mo
! R
DJ R
3 ™
Bissnsnilrisnnns SNt ssttttiameddtitattidaittisnnd 3 3 <:
)J> :O’ g ]
2 o e
o o E
".V"'.l'll'll({'lIII"'I'III‘|"lYl"""l"ll"""""'ll' 0 8 ? -
e Lo} ~ 0
— ~ 0 Lo}
o o o]
3 e e
W O N
+ Q@
3 s 3
;; H O ~ o
- ~— $ 0 O E ;
O Q& e n [
ENE
— -
<3 N s PR | I o P
o
(AN A R L R RN R R T IR RSN R RN RN TR N
'!> E
= =)
0
=
%)




\
x
I
el""“"'|\|l|i||lll'|‘I'IIY'\)VI""l'I'V'Illll"lllllll'I@
— S
——————it
== ™ %\_______,'c:

]
5

IR MR TN
Goranpunnnnesinne

R R RN R R T O o S B A O N S R R BN B B BERE I SR

>

L

-t
T T Y Y TR T O CCT O YT O U YT T TY YT O v

U ORI T T IYY

{

1

ﬁ

— =

~

1

| o BUUTBRNEL TSR LY DRV TR,
Carinritnnng

SNSRI R R N R N O e P N N S NN R NN

>

T
+

X

T

ARNAARNERAS AL A RN R R R RN o S S RN RRNENY o R RN R AN ]

[WNUIDTTIANEL IR IO TRIE TN RIDYIN 4G |

GansiainAng, nmu,uuununuununnuuuﬂ

RN N NNV ERERE RN NS FY N IR E I

>

L

ing

field

ic

(c)

for waves be

imes

Figure 19 but for a magnet
(a) T = 4.3x10%; (b) T = 4.4x10°' (c) 4.8x10° plasma

l space at three t

(b)
in

in rea

field contours i

0.05

periods.

{(a)

pumped at the same rate as
ce

0

FIGURE 21. Electric

124




125

One consequence of the nonlinear wave interaction
between the pump modes and other wave modes in the system
is that wave energy can be taken out of resonance with
the beam. 1In Figure 22 we plot the pump electrostatic
enerqgy (Wp) as a function of time. 1In all three cases
the pump energy saturates at a maximum value, and then
rapidly depletes. Although the resonant modes are still
being pumped, energy is being removed much faster than
it can be absorbed by the resonant waves. Since the rate
at which energy can be absorbed by the waves is propor-
tional to YWp, where vy is the linear beam growth rate,
this depletion can have a stabilizing effect on the beam
and limits the amplitude of the Langmuir wave turbulence.
Therefore, we see the total electrostatic energy approach-
ing a steady value after the pump waves are depleted
(Figure 23).

The magnetic field causes a change in the saturation
level of the pump waves and the total electrostatic eneray.
Because the dominant nonlinear wave interactions are
slower in the magnetized cases, the beam can remain reson-
ant with the pump waves for a longer time before they
deplete. This results in the higher levels of Langmuir
turbulence. Further increase of the magnetic field should
not cause higher levels than we see in the case o = 0.05

ce

wpe' We deduce this from another simulation (not shown

here) in which we forced the wave evolution to be one
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Pump electrostatic energy vs. time for waves
being driven at a constant rate. The three
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dimensional by putting no noise in the transverse modes
and using only two pump modes along the kx-axis. The
saturated values for Wp and W were the same as in the case
Weg = 0.05 mpe’ Since the wave-wave interactions seem
to be increasingly limited to the longiﬁudinal direction
for larger values of the magnetic field, this puts an
upper limit on how much the magnetic field can affect
the depletion of the pump.

In order to appreciate the role of various wave
interactions in the unmagnetized and magnetized cases,
we should examine the evolution of wave amplitude in k-
space. In Figqures 24, 25, and 26 we can identify col-
lapse with the transfer of energy out of the pump modes
into adjacent k-space modes. In the magnetic cases,
the collapse seems to be inhibited in the direction trans-
verse to the field. The saturation of the beam insta-
bility can be associated with collapse. However, in the
process of collapsing, the wavepacket acquires wave
components which are parametrically unstable. This is
seen in the buildup of wave amplitude in modes near ko/3,
which is the position for the four~wave decay instability
at these parameters (see Figure 15a; also Nicholson, et
al., 1978). It is important to note that these modes
have not grown from the noise levels, which would take a
longer time, but grow exponentially from the enhanced

levels produced in the collapse. The subsequent
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FIGURE 26. Electric field contours in wavenumber snace

at three times: (a) T = 4.3x105; (b) T =

4.4x10°; and (c) T = 4.8x10° plasma periods.

The wave modes within the box centered at
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parametric excitation results in a very sudden depletion
of the pump. This does not appear to disrupt the col-
lapse, as we see wavepackets continue to intensity. 1In
fact, in the magnetized case, these instabilities seem to
play an important role in forming the pancake-shaped
wavepacket which preceeds the collapse.

Therefore, it seems consistent to attribute the
depletion of the pump waves to the decay instability at
modes enhanced by the collapse process, rather than
directly by the collapse itself, as suggested in Nicholson,
et al., 1978. This behavior is most evident in the
magnetized examples. It is also observed in a purely

one-dimensional code (Hafizi, 1980).

Scenario for Magnetic Collapse

From these simulations, and other initial value
computations (Goldman, Weatherall, and Nicholson, 1980),
we construct the following scenario for magnetic collapse
of beam generated wavepackets:

1) The collapse begins at the same threshold energy
as in the unmagnetized case. However, unlike the unmag-
netized case, the collapse transverse to the field is
inhibited, and seems to be slower. 1In real space, the

transverse dimension of the packets remain the same,
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although the longitudinal dimension decreases because
collapse is occurring in that direction.

2) Eventually, parametric excitation will occur to
produce a new k-space configuration. These instabilities
will be very intense because the background level of the
unstable modes has been enhanced in the longitudinal
collapse. Because the scatter is principally in the
Bo-direction (as shown in the last chapter, and in
Weatherall, Nicholson, and Goldman, 1980), the wavepackets
are elongated in the transverse direction, as well as
continuing to contract in the longitudinal direction.

3) The new configuration in real space is a pancake-
shaped wavepacket which can collapse in both directions.
Although our simulations 4o not continue beyond this point,
the results of Krasnosel'skikh and Sofnikov (1978) show
that as collapse proceeds to dimensions for which

Ak”/kDe ~ W , the wavepacket will tend to become

ce/wpe
symmetric. After this point, the maqnetic field will
have no further effect on collapse.

We have seen from computer simulations that at pump

values of Wp = 2'10-5, even a magnetic field as small as

Woa = 0.01 Wse at 1/2 A.U. might cause pancake-shaped
wavepackets and slowdown of collapse of Type III generated
Langmuir waves. Later, we will show how these effects

scale with the wave energy and magnetic field. Now, by

use of a collapse virial theorem, we will show that the
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increased collapse time is the result of the altered

k-space geometry of wave modes.

The Virial Theorem

In classical mechanics, an identity due to Lagrange
and Jacobi relates the time behavior of the mutual dis-
tances between masses to the value of the quantity 2T+w,
where T is the kinetic energy of the center of mass motion
of the particles and w is their potential energy (which
is negative in the case of gravity). If the so-called
virial quantity is positive, in an average sense the
masses will tend to separate from each other; if it is

negative, they will tend to get closer.

A virial theorem can also be derived in Langmuir wave

mechanics to describe the stability of a wavepacket
(Goldman and Nicholson, 1978; and Goldman, Weatherall,

and Nicholson, 1980). 1In this case, the time behavior of
the spatial width of a wavepacket is also related to
various wave energy quantities. Relevant field quantities

are defined as: '

[4)]
[}
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’.‘-

>
[oo]
»
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All of the above integrals are conserved by the nonlinear

Schroedinger equation (54). The first integral gives
the total field energy H, where the first term is due to

thermal dispersion and the second is from the nonlinear

e — o .

wave interaction. The third term, Hp, is defined as

2
Q 2
Hp = 5 J.4|§‘£[ dr , (95) b
where the operator Pij = Gij'- bibj' selects vector

components perpendicular to the magnetic field direction,
b. For illustration, consider a monochromatic Langmuir '

~

wave of the form E = ko exp(i&o°§). The integrand of Hy
becomes 92/2 sinze, where € is the angle between E and B,- *
This, of course, is due to magnetic dispersion. The
other integrals give the wave momentum, S, and boson

number, N.

We will define the mean square width of the wave-

packet, <5r2>, by a spatial average with |E|2/N as a
weighting function: H
| %ar
<fr™> =

2 LIRSS |

I, is the centroid position of the wavepacket. In two

dimensions, the virial theorem shows that "

5. %¢6r2s = Z(A-——B

2H )
t N *

(97)

The quantity A is invariant:
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4
2 ;
S
A=%I§——§— . (98) :
N :

When there is no magnetic field, the condition for col- ?
!
lapse is that A < 0. With a magnetic field, the rate of {v

collapse is no longer constant because H_ is not invariant, Qi

B
and collapse is not assured even if initially A-ZHB/N is :

negative. We can demonstrate numerically that a magnetic

field can cause the wavepacket to evolve toward smaller

perpendicular wavenumbers and cause H, to decrease. As

B
HB gets smaller and A remains constant, the collapse rate

will go from a large negative number (fast collapse) to a

smaller negative number (slower collapse). If the col-

lapse rate changes sign, which is possible if !
2H
B

5 > |al, (99) {

1

then collapse in two dimensions may be prevented. What ‘?

we find in numerical simulation is that at this point
other wave interactions, such as parametric instability,
take place and the virial theorem no longer applies.
These interactions seem to always lead to a situation for
which collapse can occur. We have seen this happen in
the numerical examples in the last section.

These points are well demonstrated in initial value

runs (Goldman, Weatherall, and Nicholson, 1980). For a

4

broadband pump of 21 modes with energy Wp = 3:10° " (which

|
|
|
|
J 3
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is well above the threshold found in the growing pump

simulations), we find initially thatl

2HB

N

3

A - ~ =17x10"° , (100)

with or without a magnetic field, and

2

2H W
—B -~ 30 x (ﬁ) . (101)
N w
pe
- : 10”3
For Ooe = 0.1 wpe’ we find that ZHB/N ~ 300-10 ~.

Therefore, a change of only 5% in H_ can inhibit collapse.

B
In Table 5 we show the behavior for ZHB/N during adiabatic
collapse for various values of the magnetic field. For
some cases, there is a significant decrease in ZHB/N,
enough to make A - ZHB/N positive. Above threshold, this

effect seems to occur when the magnetic energy is greater

than the nonlinear energy:

H'le—lsflE|4 dr . (103)

The result is a slowdown, or cessation of two-dimensional
collapse. In Figure 27 we plot the collapse times for
the various values of magnetic field. We find that the
collapse time increases with larger magnetic field

strength in a way consistent with the above theory.

1To convert to the system of dimensionless units
used in Goldman, Weatherall, and Nicholson (1980),
multiply by (n/3)(me/mi).

.
!
!
{
|
|
|
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TABLE 5 i‘
I
2H /N x 10*3 DURING ADIABATIC COLLAPSE '
T mce/wpe‘ | ’
T 0.01* 0.05*" 0.075* 0.10** |
i
10 3 74 167 229 ]
20 3 74 162 224
30 4 72 157 220
40 6 71 145 207
50 11 73 132 220
60 77 117 197
7¢ 106 192
80 185
150 154
*,
21 mode pump.
**39 mode pump.
L — = aaiitasmanidoediiibi i i _ i e e A i
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FIGURE 27. Time for central energv densitv in collap-
sing wavepacket to reach ten times its
initial value for various magnetic field
strenaths, Initial value of the pump is

W, = 3x10°4, Y
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Magnetic collapse can take so long that wave interaction

time scales will be the same as for a one-dimensional

wavepacket. {

4

For wp = 3+10° 7, magnetic effects become observable b

for Wee ~ 0.03 Wpe In the simulations of last section, ¥
the pump only reached an amplitude of W, = 2:1077, less

by a factor of 10. In that case we found magnetic
2

effects when Yoo = 0.01 wpe, which means that (mce/wpe)

is also smaller by 1/10. This scaling is expected from f

Equation (99). This is quite different from the magnetic
effects on parametric instability, which did not depend
on pump energy, but occurred when

Ye k
w—e' ~ - sin6 . (103
pe De

?gese latter effects are purely geometric (Krasnosel'skikh
and Sotnikov, 1977; Weatherall, Goldman, and Nicholson,
1978; Freund and Papadopoulos, 1980). The new behavior
we have just described depends upon the energy in the
sfstem.

We have seen that the decrease in HB affects
collapse in a significant way. The computer simulations
showed us that Hy decreases, and the virial theorem
enabled us to calculate the effect on collapse. However,
neither offers any elightenment as to why this occurs.

In the next section we will use a perturbation theory

to describe collapse. This will show that wave-wave
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transitions perpendicular to the field become increas-

ingly difficult for larger k, because of the sinze

1

dependence in the magnetic energy term.

Perturbative Collapse Theory

We will do a time-dependent perturbation theory on
a simple broadband pump consisting of five pump modes
centered on k = ko in a rectangular grid with spacing
Ak = A (see Figure 28). We assume that the interaction
is weak so that each pump mode amplitude, A, can be i
considered constant, and the effect on the other modes ;“
can be treated as a perturbation. The interaction is :
described by the ncnlinear term, ([El2 - T;TE)E. in the

2

nonlinear Schroedinger Equation (54). To order A“, the

perturbation theory shows the modulational instability.

— ik o

The order A3 seems to0 be related to collapse.

We can write the linear wave equation as

where the linear wave operator Lo = Vz—stinze. The '

vector nature of E has been ignored by assuming E || k.-
This will cause small errors in the interaction amplitudes,

but in this theory only the phase difference between !

modes seems to be critical.




k
b'4
b
X
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FIGURE 28. Pump modes 1-5 and test modes a, b in

broadband perturbation theory.
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In the absence of interactions, we can write E in
terms of its independent wave functions:

-i¢_t
E = :E: au e S (105)

s's
s=
all modes
For the pump waves, the amplitude ag = A; for all other

waves, ag << A. The spatial functions ug are the ortho-

gonal wave functions

u, =exp ik -x . (106)

For a finite grid, both Es and x are discrete. Finally,

the phase factor, ¢s, can be found from the linear dis-

2

person relation, w = k2+stin 8. For the pump modes,

6, =k 2 -2k ,

6, =k 2+ 2%+ 0%,
6y =k %+ 2k 2 + 2%,
by = ko2 + A% 4+ g '
65 = k%,

and for the test modes,

2 2 ~
6, = k2 + 40?4 102

2

2
+ 4koA + 44° .

=ko
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When ko>> A, the angular terms are slnes ~ kys/ko; so

we have defined Q¢ = Qz(Az/koz).
Now let us include the nonlinear coupling due to

the "potential®

v = |g|? - |E?| . (107)

The time behavior is given by the nonlinear Schroedinger

equation:
-18tE = L,E + VE . (108)

Because of the interaction, the nonlinear system has

different eigenfunctions. We can still write E in terms
of its old wave functions, but the coefficients ag will
vary with time. We find from Equations (105) and (108)

that

. -i¢st -i¢st
b E asus e = E asVus e ’

] s

and the potential V is ‘

-i(¢_-¢4 )t
vV = E E aman*umun* e m n i
m n ‘

m#n

+i(d_-4 ) t
m 'n
+ *a *
a *au *u e

(the terms where m = n are subtracted out by the spatial

average). The amplitude of the ith mode, aj ., is given by
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-iéi = :E: :z: :E:s[(ki-ks)-(km-kn)]asaman*
m n S
m#n
i(¢.-¢0 )t =-i(¢ -0 )t
e 1 8% ¢ m o n -, §[(ky=k ) +(k k)]
i(9.-¢ )t +i(d_ -4 )t
. asam*an e 18 ¢ mon ’ (109)

The d-functions assure that the spatial dependence of
the right side is the same as u, . This requirement is
essentially wavenumber matching between four waves.

We can do the perturbation theory for different
orders of the pump amplitude. To zero and first order
in A, the mode coupling is very small. The second order
case corresponds to theusual linearization scheme when
there is only one pump mode, and describes parametric
instability. The third order theory describes the trans-
fer of wave amplitude from the pump modes to adjacent
modes (which is seen in the early stages of collapse).
This order does not occur in parametric theory because
one pump mode does not satisfy the wavenumber matching
condition. Although growth is not exponential, this
process can lead to large amplitudes in non-pumped modes
before parametric excitation can build up from small
background noise levels,

Below we examine two cases. First we will treat

the five pump modes as a single pump mode with amplitude

A = /5 A, and demonstrate that the theory contains the

————————e e oo

P A T
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modulational instability. This will involve only o(Az).
Next, we concentrate on the broadband effects by working
only with o(A3). Thus we assume that the collapse pro-

cess occurs before parametric instability. We derive

an a posteriori condition for the validity of this

treatment.

Modulational Theorvy, o(Az)

With the one pump mode, Equation (109) gives to

second order:

—-—ia. = x12 32, % -
ia; = 2|a| a; + 2 E A%a *8(k,+k -2k )
n

exp[i(¢i+¢n-2¢o)t] . (110)

This results in a set of coupled equations between a;
and a . where ki + kn = 2ko:

2a. 52 2iat

—'. = Al *
ia; 2|A] § 2% * e ’

. Z12 a2 -2iat
* =
+ia 2|a[%a * + 2n* a; e , (111)
where 2q = ¢n + ¢i - 2¢° is a function of ko and ki. The
coupled equations can be more simply written in terms of

the functions ¢, = aii*exp(-iat) and c, = an*ﬁexp(iat):
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-ic1

(2152 - aye; + 2]&l%c, |

. 512 512
ic, = (2]A]° - a)e, + 2[A]%c, . (112)

If we assume that c1 and c2 have the time behavior

exp(-iwt), then we find the dispersion relation:

w2 = -4a|i]? + a2, (113)

An exponentially growing solution is obtained when
@ < 4|A|%. This describes the modulational instability

(Nishikawa, 1976). The maximum growth rate is given by

Coarx12
w, = 2]A)“ . (114)

Collapse Theory, o(A3)

The third order terms in the wave interaction give

SRINES 3D 35 TR
ia; [al“a 268 (k +k kg=kp)
m n s

m#n

exp[i(¢i+¢n-¢s-®m)t]. (115)

If we consider (s,m) the "initial state," and (a,n) the
"final state"” when i = b, there are two allowed transi-
tions which preserve wavenumber matching (see Table 6).

The rate of change of ay is given by
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TABLE 6
WAVENUMBER MATCHED CONDITIONS
Initial Final ¢f—¢i Degeneracy
2
2,5 b,4 4A 4
2,2 b,5 242 2

st b
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. 2. 4% i24%¢
-ia, = [A|“A(de + 2e ) . (116)
This can be integrated to solve for ay - The modulus
squared of the amplitude is
2 6 sinZAzt sinAzt
lay|© = [a]® |32 (=5—= +4(——2—) .
24 A

This formula is similar to Fermi's golden rule for gquantum
mechanical transitions in perturbed syvstems (Leighton,
1959, or Bahm, 1951). By analogy, |a |? is the probabil-
ity that the system will be found in state b after time ¢,
AIA!Z is the matrix element for a transition froman ini-
tial state i to the final state £, and ¢f - ¢i is the
difference in energy between the final and initial states.
As in quantum mechanics, only "transitions" for which the
phase difference ¢f - ¢i is small will occur. This has
interesting implications for the mode a, which is located
perpendicular to the magnetic field relative to the pump,
because its phase contains an additional magnetic term
which will cause a larger mismatch in ¢f - ¢i. The

calculation for |aal2 gives

2 _ .6 sin2 (A%+3%) ¢ sin’ (a%+3%) ¢
la [ = [a]® {32 Y + 4 3
2(A°+Q°) (A™+07)
(118)
The new phase term in the equation can explain the
inhibition of collapse across the magnetic field that we

observed in the numerical simulations.

-

et N e
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The theory also describes other features of the
collapse well, such as the time scale, and the fact
that collapse occurs as a "broadening" in k-space and is
independent of the initial background noise.

We can compare this theory with a numerical example
(Goldman, Weatherall, and Nicholson, 1980) for which the
grid spacing A was 0.00125 kDe' the central wavenumber,
k_ = 0.01 kDe’ and the magnetic field Woe = 0.1 w__. 1In

o pe
dimensionless units,

2% = 0.2x107%2 , 92 = 4.8x1072 (119)
The initial amplitude for each pump mode was
A =0.03. (120)

In this case there were 39 pump modes, so the total
amplitude was A= 0.185, corresponding to a pump strength
W = 3x10_4. According to the above discussion, we can

expect the time behavior of a, and a, to be given by

la | ~ J|? sin(a%40%) ¢t
a 2, =2
(A“+Q%)
Ia ] - |i|3 sinAZt
b A2 . (121)

In Table 7, we show that the magnetic field has an
important effect in inhibiting transitions perpendicular
to the field. At T = 30, when collapse is observed to

begin when there is no maagnetic field, Iabl has reached
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EFFECT OF FREQUENCY MISMATCH ON AMPLITUDE

GROWTH OF COLLAPSE MODES

T sinAzt sinjA2+§2)t
a2 (02482

10 10 10

20 20 17

30 30 21

40 40 20

50 50 14
1000 625 12
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significant amplitude compared with the pump modes.
However, in the magnetized case, the collapse transverse
to the field cannot sustain itself beyond this time. We
can interpret this to mean that the nonlinear interaction
is not strong enough to drive this higher energv state.
If similar interactions among the pump mdédes cause the
waves to populate the lowest energy modes (near the kz-
axis), then we can deduce that not only will collapse be
inhibited transverse to the field, but that HB will
decrease with time as well. This, according to the virial
theorem, will slow down collapse.

Now we must see when the above treatment of four~
wave interactions, which ignores interactions of o(AZ),

is consistent. The third order process can proceed

vigorously as long as

A% << 1 . (122)

This means that the argument of sin is small, and the
amplitude will be steadily increasing with time;
a -~ |A}3t. In this case, the amplitude, a, will be the

order of the pump amplitude within times

t~17]|a]%. (123)

This time interval allows only one e-folding for the
modulational instability, so these unstable modes will

still be near the background level. Therefore the
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collapse will occur socner than the modulational D

instability as long as the time is short enough that Azt

is still small. This requires
A2 >> a2, (124)

If we interpret A as the total pump amplitude and A as

the bandwidth of the pump, then, in physical units, this

inequality gives

2
w12 L85 (125)
kDe '
This is approximately the collapse threshold condition
given by the virial theorem (Goldman and Nicholson,

1979).

Summary

In numerical simulations of collapse, we have
identified two effects due to the magnetic field: a
change in shape of the collapsing wavepacket and a slowing
in the collapse rate. These effects seem to be related.
The virial theorem shows that the rate of collapse is p !
slowed because of a decrease in magnetic energqgy, HB'
which is brought about by a decrease in amplitude of
perpendicular wavenumbers.

The explanation for the decrease in k, is suggested &
il

by a perturbation theory which shows that higher order

wave interactions are inhibited between waves when the
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frequency mismatch is large relative to the rate of
nonlinear amplitude growth. By analogy to quantum -
mechanics, we interpret this to mean that the probability
of a transition to various wave states becomes small if
the energy difference between these states and the
initial state is larger than the interaction energy.

The magnetic energy of a state (analogous to the wave
dispersion) is proportional to stinze, and increases for
larger angles 6 between the wave vector and the magnetic
field. Therefore, the lower energy states will corres-

pond to waves with smaller k When the magnetic energy

-L'
is large compared with the interaction energy wave tran-
sitions will favor these lower energy states. This will

result in a net decrease of k‘. Thus, HB will become

smaller, and magnetic effects will become evident.

-

When our theory is applied to growing beam problems,
the slowdown vesults inanovershoot of the beam saturation
levels and extra electrostatic energy is introduced into
the system. In the Type III problem, we find that this
effect increases wave energy by a factor of two in two-~
dimensional calculations. At 1/2 A.U., a magnetic field
strength of Woe = 0.01 wpe does not seem to produce a
significant overshoot, but does alter the geometry of
the collapsing wavepacket. However, w = 0.05 w seems

ce pe
to be a very strong magnetic field for wave energy levels

near 2-1072.

e ————




CHAPTER VI

CONCLUSION

What can this work tell us about the magnitude of
the magnetic field needed to affect nonlinear Langmuir
wave processes?

For parametric instability, we found that the
magnetic field caused a change in the wave vectors of
unstable waves. This shift enables the waves to maintain
frequency matching in the multiple wave interaction. 1In
this sense, the effect of the magnetic field is on the
"geometry" of the instability. Such a shift is required
when the magnetic field introduces a significant change
in the frequency mismatch between the pump wave and the
unstable wave, or equivalently, when the magnetic dis-
persion is comparable with the thermal dispersion,

k

%’ﬁzﬁi . (126)

pe kDe

£

>

This effect does not reduce the growth rates of insta-
bilities, but only causes them to have smaller perpendic-

ular wavenumbers.

it it
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Instabilities which are nearly perpendicular to the

magnetic field [kl/k‘|<< (me/mi)%] are suppressed by

small magnetic fields. This is due to a change in the
nature of the low frequency electron motion for oscilla-
tions directly across the magnetic field when 0. > kv

e ~ e
We observe two effects of the magnetic field on

collapse. The collapsing wavepackets become "pancakes"
with their largest dimensions transverse to the magnetic

field, The other effect is a slowing in the timescale

of the collapse.

Let us consider a two-dimensional Gaussian wave-

packet,

E, [ ak 22 Akszz]
_E_: i—-zexp ik z = - .
ko o 2 2

(127)

For this shape, the virial theorem gives us the following

condition for collapse to be affected [see Eq. (99)]

ak, 2 w2 ak, % ok, 2
i _ce I L _ W (128)
AT ) 2 24| 128
o) P '"De De

This is not a very useful condition, because close to
collapse threshold, the right side of Eq. (128) will be
near zero. This implies that an infinitesimal magnetic
field can alter collapse. However, while this is
necessary, it is not a sufficient condition for magnetized
collapse. A sufficient condition {see Egq. (102)] is

discovered empirically to require
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2 2
bk T woe  w
ce , W (129)
3 2 o2 24
o ‘'pe

This condition is consistent with, but not proven by, a

broadband perturbation theory. At collapse threshold, [
we can write the condition for the magnetic field to

affect collapse as

-ce , _o° (130)

This assures that the magnetic dispersion in the wave-
packet exceeds the thermal dispersion. This condition
is independent of the packet width AkL° '
For Type III parameters at 0.5 A.U., ko = (0.01 kDe
and Wog = 0.01 wpe' so that the terms in Equation (130)
are roughly equal. Our numerical simulation with these
parameters showed some change due to the magnetic field.
The effects for a slightly stronger field, Wog = 0.05 mpe'
were more dramatic. We conclude that magnetic effects
in Type III bursts are possible.
In all of the examples we have seen, the magnetic
field does not prevent the collapse of Langmuir waves. '

Even in cases where the initial wavepacket does not it-

self collapse, wave interactions seem to eventually : '

create a pancake-shaped wavepacket which does.
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